Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wfrlem3OLDa | Structured version Visualization version GIF version |
Description: Lemma for well-ordered recursion. Show membership in the class of acceptable functions. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 31-Jul-2020.) |
Ref | Expression |
---|---|
wfrlem1OLD.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
wfrlem3OLDa.2 | ⊢ 𝐺 ∈ V |
Ref | Expression |
---|---|
wfrlem3OLDa | ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem3OLDa.2 | . 2 ⊢ 𝐺 ∈ V | |
2 | fneq1 6508 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 Fn 𝑧 ↔ 𝐺 Fn 𝑧)) | |
3 | fveq1 6755 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑤) = (𝐺‘𝑤)) | |
4 | reseq1 5874 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))) | |
5 | 4 | fveq2d 6760 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))) |
6 | 3, 5 | eqeq12d 2754 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
7 | 6 | ralbidv 3120 | . . . 4 ⊢ (𝑔 = 𝐺 → (∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
8 | 2, 7 | 3anbi13d 1436 | . . 3 ⊢ (𝑔 = 𝐺 → ((𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ (𝐺 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))) |
9 | 8 | exbidv 1925 | . 2 ⊢ (𝑔 = 𝐺 → (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))) |
10 | wfrlem1OLD.1 | . . 3 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
11 | 10 | wfrlem1OLD 8110 | . 2 ⊢ 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} |
12 | 1, 9, 11 | elab2 3606 | 1 ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ↾ cres 5582 Predcpred 6190 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: wfrlem17OLD 8127 |
Copyright terms: Public domain | W3C validator |