Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wfrlem3OLDa | Structured version Visualization version GIF version |
Description: Lemma for well-ordered recursion. Show membership in the class of acceptable functions. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 31-Jul-2020.) |
Ref | Expression |
---|---|
wfrlem1OLD.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
wfrlem3OLDa.2 | ⊢ 𝐺 ∈ V |
Ref | Expression |
---|---|
wfrlem3OLDa | ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem3OLDa.2 | . 2 ⊢ 𝐺 ∈ V | |
2 | fneq1 6562 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 Fn 𝑧 ↔ 𝐺 Fn 𝑧)) | |
3 | fveq1 6810 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑤) = (𝐺‘𝑤)) | |
4 | reseq1 5904 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))) | |
5 | 4 | fveq2d 6815 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))) |
6 | 3, 5 | eqeq12d 2753 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
7 | 6 | ralbidv 3171 | . . . 4 ⊢ (𝑔 = 𝐺 → (∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))) ↔ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
8 | 2, 7 | 3anbi13d 1437 | . . 3 ⊢ (𝑔 = 𝐺 → ((𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ (𝐺 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))) |
9 | 8 | exbidv 1923 | . 2 ⊢ (𝑔 = 𝐺 → (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤)))))) |
10 | wfrlem1OLD.1 | . . 3 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
11 | 10 | wfrlem1OLD 8186 | . 2 ⊢ 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} |
12 | 1, 9, 11 | elab2 3623 | 1 ⊢ (𝐺 ∈ 𝐵 ↔ ∃𝑧(𝐺 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝐺‘𝑤) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2714 ∀wral 3062 Vcvv 3441 ⊆ wss 3897 ↾ cres 5609 Predcpred 6223 Fn wfn 6460 ‘cfv 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-iota 6417 df-fun 6467 df-fn 6468 df-fv 6473 |
This theorem is referenced by: wfrlem17OLD 8203 |
Copyright terms: Public domain | W3C validator |