![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imo72b2lem2 | Structured version Visualization version GIF version |
Description: Lemma for imo72b2 42914. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
imo72b2lem2.1 | β’ (π β πΉ:ββΆβ) |
imo72b2lem2.2 | β’ (π β πΆ β β) |
imo72b2lem2.3 | β’ (π β βπ§ β β (absβ(πΉβπ§)) β€ πΆ) |
Ref | Expression |
---|---|
imo72b2lem2 | β’ (π β sup((abs β (πΉ β β)), β, < ) β€ πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaco 6250 | . . . 4 β’ ((abs β πΉ) β β) = (abs β (πΉ β β)) | |
2 | 1 | eqcomi 2741 | . . 3 β’ (abs β (πΉ β β)) = ((abs β πΉ) β β) |
3 | imassrn 6070 | . . . . 5 β’ ((abs β πΉ) β β) β ran (abs β πΉ) | |
4 | 3 | a1i 11 | . . . 4 β’ (π β ((abs β πΉ) β β) β ran (abs β πΉ)) |
5 | imo72b2lem2.1 | . . . . . 6 β’ (π β πΉ:ββΆβ) | |
6 | absf 15283 | . . . . . . . 8 β’ abs:ββΆβ | |
7 | 6 | a1i 11 | . . . . . . 7 β’ (π β abs:ββΆβ) |
8 | ax-resscn 11166 | . . . . . . . 8 β’ β β β | |
9 | 8 | a1i 11 | . . . . . . 7 β’ (π β β β β) |
10 | 7, 9 | fssresd 6758 | . . . . . 6 β’ (π β (abs βΎ β):ββΆβ) |
11 | 5, 10 | fco2d 42904 | . . . . 5 β’ (π β (abs β πΉ):ββΆβ) |
12 | 11 | frnd 6725 | . . . 4 β’ (π β ran (abs β πΉ) β β) |
13 | 4, 12 | sstrd 3992 | . . 3 β’ (π β ((abs β πΉ) β β) β β) |
14 | 2, 13 | eqsstrid 4030 | . 2 β’ (π β (abs β (πΉ β β)) β β) |
15 | 0re 11215 | . . . . . . . 8 β’ 0 β β | |
16 | 15 | ne0ii 4337 | . . . . . . 7 β’ β β β |
17 | 16 | a1i 11 | . . . . . 6 β’ (π β β β β ) |
18 | 17, 11 | wnefimgd 42903 | . . . . 5 β’ (π β ((abs β πΉ) β β) β β ) |
19 | 18 | necomd 2996 | . . . 4 β’ (π β β β ((abs β πΉ) β β)) |
20 | 2 | a1i 11 | . . . 4 β’ (π β (abs β (πΉ β β)) = ((abs β πΉ) β β)) |
21 | 19, 20 | neeqtrrd 3015 | . . 3 β’ (π β β β (abs β (πΉ β β))) |
22 | 21 | necomd 2996 | . 2 β’ (π β (abs β (πΉ β β)) β β ) |
23 | imo72b2lem2.2 | . . 3 β’ (π β πΆ β β) | |
24 | simpr 485 | . . . . 5 β’ ((π β§ π = πΆ) β π = πΆ) | |
25 | 24 | breq2d 5160 | . . . 4 β’ ((π β§ π = πΆ) β (π£ β€ π β π£ β€ πΆ)) |
26 | 25 | ralbidv 3177 | . . 3 β’ ((π β§ π = πΆ) β (βπ£ β (abs β (πΉ β β))π£ β€ π β βπ£ β (abs β (πΉ β β))π£ β€ πΆ)) |
27 | imo72b2lem2.3 | . . . 4 β’ (π β βπ§ β β (absβ(πΉβπ§)) β€ πΆ) | |
28 | 5, 27 | extoimad 42906 | . . 3 β’ (π β βπ£ β (abs β (πΉ β β))π£ β€ πΆ) |
29 | 23, 26, 28 | rspcedvd 3614 | . 2 β’ (π β βπ β β βπ£ β (abs β (πΉ β β))π£ β€ π) |
30 | 5, 27 | extoimad 42906 | . 2 β’ (π β βπ‘ β (abs β (πΉ β β))π‘ β€ πΆ) |
31 | 14, 22, 29, 23, 30 | suprleubrd 42908 | 1 β’ (π β sup((abs β (πΉ β β)), β, < ) β€ πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 β wss 3948 β c0 4322 class class class wbr 5148 ran crn 5677 β cima 5679 β ccom 5680 βΆwf 6539 βcfv 6543 supcsup 9434 βcc 11107 βcr 11108 0cc0 11109 < clt 11247 β€ cle 11248 abscabs 15180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 |
This theorem is referenced by: imo72b2 42914 |
Copyright terms: Public domain | W3C validator |