Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imo72b2lem2 Structured version   Visualization version   GIF version

Theorem imo72b2lem2 41484
Description: Lemma for imo72b2 41490. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
imo72b2lem2.1 (𝜑𝐹:ℝ⟶ℝ)
imo72b2lem2.2 (𝜑𝐶 ∈ ℝ)
imo72b2lem2.3 (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹𝑧)) ≤ 𝐶)
Assertion
Ref Expression
imo72b2lem2 (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶)
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝜑,𝑧

Proof of Theorem imo72b2lem2
Dummy variables 𝑐 𝑣 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaco 6130 . . . 4 ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ))
21eqcomi 2747 . . 3 (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)
3 imassrn 5955 . . . . 5 ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)
43a1i 11 . . . 4 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹))
5 imo72b2lem2.1 . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
6 absf 14926 . . . . . . . 8 abs:ℂ⟶ℝ
76a1i 11 . . . . . . 7 (𝜑 → abs:ℂ⟶ℝ)
8 ax-resscn 10811 . . . . . . . 8 ℝ ⊆ ℂ
98a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℂ)
107, 9fssresd 6605 . . . . . 6 (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ)
115, 10fco2d 41479 . . . . 5 (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ)
1211frnd 6572 . . . 4 (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ)
134, 12sstrd 3926 . . 3 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ)
142, 13eqsstrid 3964 . 2 (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ)
15 0re 10860 . . . . . . . 8 0 ∈ ℝ
1615ne0ii 4267 . . . . . . 7 ℝ ≠ ∅
1716a1i 11 . . . . . 6 (𝜑 → ℝ ≠ ∅)
1817, 11wnefimgd 41478 . . . . 5 (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅)
1918necomd 2997 . . . 4 (𝜑 → ∅ ≠ ((abs ∘ 𝐹) “ ℝ))
202a1i 11 . . . 4 (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ))
2119, 20neeqtrrd 3016 . . 3 (𝜑 → ∅ ≠ (abs “ (𝐹 “ ℝ)))
2221necomd 2997 . 2 (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅)
23 imo72b2lem2.2 . . 3 (𝜑𝐶 ∈ ℝ)
24 simpr 488 . . . . 5 ((𝜑𝑐 = 𝐶) → 𝑐 = 𝐶)
2524breq2d 5080 . . . 4 ((𝜑𝑐 = 𝐶) → (𝑣𝑐𝑣𝐶))
2625ralbidv 3119 . . 3 ((𝜑𝑐 = 𝐶) → (∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣𝑐 ↔ ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣𝐶))
27 imo72b2lem2.3 . . . 4 (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹𝑧)) ≤ 𝐶)
285, 27extoimad 41481 . . 3 (𝜑 → ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣𝐶)
2923, 26, 28rspcedvd 3553 . 2 (𝜑 → ∃𝑐 ∈ ℝ ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣𝑐)
305, 27extoimad 41481 . 2 (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡𝐶)
3114, 22, 29, 23, 30suprleubrd 41483 1 (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2111  wne 2941  wral 3062  wss 3881  c0 4252   class class class wbr 5068  ran crn 5567  cima 5569  ccom 5570  wf 6394  cfv 6398  supcsup 9081  cc 10752  cr 10753  0cc0 10754   < clt 10892  cle 10893  abscabs 14822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-pre-sup 10832
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-2nd 7781  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-sup 9083  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-div 11515  df-nn 11856  df-2 11918  df-3 11919  df-n0 12116  df-z 12202  df-uz 12464  df-rp 12612  df-seq 13600  df-exp 13661  df-cj 14687  df-re 14688  df-im 14689  df-sqrt 14823  df-abs 14824
This theorem is referenced by:  imo72b2  41490
  Copyright terms: Public domain W3C validator