| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imo72b2lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for imo72b2 44290. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| imo72b2lem2.1 | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| imo72b2lem2.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| imo72b2lem2.3 | ⊢ (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹‘𝑧)) ≤ 𝐶) |
| Ref | Expression |
|---|---|
| imo72b2lem2 | ⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaco 6203 | . . . 4 ⊢ ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ)) | |
| 2 | 1 | eqcomi 2742 | . . 3 ⊢ (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ) |
| 3 | imassrn 6024 | . . . . 5 ⊢ ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)) |
| 5 | imo72b2lem2.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
| 6 | absf 15247 | . . . . . . . 8 ⊢ abs:ℂ⟶ℝ | |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → abs:ℂ⟶ℝ) |
| 8 | ax-resscn 11070 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 10 | 7, 9 | fssresd 6695 | . . . . . 6 ⊢ (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ) |
| 11 | 5, 10 | fco2d 44280 | . . . . 5 ⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
| 12 | 11 | frnd 6664 | . . . 4 ⊢ (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ) |
| 13 | 4, 12 | sstrd 3941 | . . 3 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ) |
| 14 | 2, 13 | eqsstrid 3969 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ) |
| 15 | 0re 11121 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 16 | 15 | ne0ii 4293 | . . . . . . 7 ⊢ ℝ ≠ ∅ |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ≠ ∅) |
| 18 | 17, 11 | wnefimgd 44279 | . . . . 5 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅) |
| 19 | 18 | necomd 2984 | . . . 4 ⊢ (𝜑 → ∅ ≠ ((abs ∘ 𝐹) “ ℝ)) |
| 20 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)) |
| 21 | 19, 20 | neeqtrrd 3003 | . . 3 ⊢ (𝜑 → ∅ ≠ (abs “ (𝐹 “ ℝ))) |
| 22 | 21 | necomd 2984 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅) |
| 23 | imo72b2lem2.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
| 25 | 24 | breq2d 5105 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (𝑣 ≤ 𝑐 ↔ 𝑣 ≤ 𝐶)) |
| 26 | 25 | ralbidv 3156 | . . 3 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝑐 ↔ ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝐶)) |
| 27 | imo72b2lem2.3 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹‘𝑧)) ≤ 𝐶) | |
| 28 | 5, 27 | extoimad 44282 | . . 3 ⊢ (𝜑 → ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝐶) |
| 29 | 23, 26, 28 | rspcedvd 3575 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ ℝ ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝑐) |
| 30 | 5, 27 | extoimad 44282 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 𝐶) |
| 31 | 14, 22, 29, 23, 30 | suprleubrd 44284 | 1 ⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ⊆ wss 3898 ∅c0 4282 class class class wbr 5093 ran crn 5620 “ cima 5622 ∘ ccom 5623 ⟶wf 6482 ‘cfv 6486 supcsup 9331 ℂcc 11011 ℝcr 11012 0cc0 11013 < clt 11153 ≤ cle 11154 abscabs 15143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 |
| This theorem is referenced by: imo72b2 44290 |
| Copyright terms: Public domain | W3C validator |