| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imo72b2lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for imo72b2 44168. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| imo72b2lem2.1 | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| imo72b2lem2.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| imo72b2lem2.3 | ⊢ (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹‘𝑧)) ≤ 𝐶) |
| Ref | Expression |
|---|---|
| imo72b2lem2 | ⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaco 6227 | . . . 4 ⊢ ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ)) | |
| 2 | 1 | eqcomi 2739 | . . 3 ⊢ (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ) |
| 3 | imassrn 6045 | . . . . 5 ⊢ ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)) |
| 5 | imo72b2lem2.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
| 6 | absf 15311 | . . . . . . . 8 ⊢ abs:ℂ⟶ℝ | |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → abs:ℂ⟶ℝ) |
| 8 | ax-resscn 11132 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 10 | 7, 9 | fssresd 6730 | . . . . . 6 ⊢ (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ) |
| 11 | 5, 10 | fco2d 44158 | . . . . 5 ⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
| 12 | 11 | frnd 6699 | . . . 4 ⊢ (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ) |
| 13 | 4, 12 | sstrd 3960 | . . 3 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ) |
| 14 | 2, 13 | eqsstrid 3988 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ) |
| 15 | 0re 11183 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 16 | 15 | ne0ii 4310 | . . . . . . 7 ⊢ ℝ ≠ ∅ |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ≠ ∅) |
| 18 | 17, 11 | wnefimgd 44157 | . . . . 5 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅) |
| 19 | 18 | necomd 2981 | . . . 4 ⊢ (𝜑 → ∅ ≠ ((abs ∘ 𝐹) “ ℝ)) |
| 20 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)) |
| 21 | 19, 20 | neeqtrrd 3000 | . . 3 ⊢ (𝜑 → ∅ ≠ (abs “ (𝐹 “ ℝ))) |
| 22 | 21 | necomd 2981 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅) |
| 23 | imo72b2lem2.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
| 25 | 24 | breq2d 5122 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (𝑣 ≤ 𝑐 ↔ 𝑣 ≤ 𝐶)) |
| 26 | 25 | ralbidv 3157 | . . 3 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝑐 ↔ ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝐶)) |
| 27 | imo72b2lem2.3 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹‘𝑧)) ≤ 𝐶) | |
| 28 | 5, 27 | extoimad 44160 | . . 3 ⊢ (𝜑 → ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝐶) |
| 29 | 23, 26, 28 | rspcedvd 3593 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ ℝ ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝑐) |
| 30 | 5, 27 | extoimad 44160 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 𝐶) |
| 31 | 14, 22, 29, 23, 30 | suprleubrd 44162 | 1 ⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ⊆ wss 3917 ∅c0 4299 class class class wbr 5110 ran crn 5642 “ cima 5644 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 supcsup 9398 ℂcc 11073 ℝcr 11074 0cc0 11075 < clt 11215 ≤ cle 11216 abscabs 15207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 |
| This theorem is referenced by: imo72b2 44168 |
| Copyright terms: Public domain | W3C validator |