Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > imo72b2lem2 | Structured version Visualization version GIF version |
Description: Lemma for imo72b2 41672. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
imo72b2lem2.1 | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
imo72b2lem2.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
imo72b2lem2.3 | ⊢ (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹‘𝑧)) ≤ 𝐶) |
Ref | Expression |
---|---|
imo72b2lem2 | ⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaco 6144 | . . . 4 ⊢ ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ)) | |
2 | 1 | eqcomi 2747 | . . 3 ⊢ (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ) |
3 | imassrn 5969 | . . . . 5 ⊢ ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹) | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)) |
5 | imo72b2lem2.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
6 | absf 14977 | . . . . . . . 8 ⊢ abs:ℂ⟶ℝ | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → abs:ℂ⟶ℝ) |
8 | ax-resscn 10859 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℂ) |
10 | 7, 9 | fssresd 6625 | . . . . . 6 ⊢ (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ) |
11 | 5, 10 | fco2d 41662 | . . . . 5 ⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
12 | 11 | frnd 6592 | . . . 4 ⊢ (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ) |
13 | 4, 12 | sstrd 3927 | . . 3 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ) |
14 | 2, 13 | eqsstrid 3965 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ) |
15 | 0re 10908 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
16 | 15 | ne0ii 4268 | . . . . . . 7 ⊢ ℝ ≠ ∅ |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ≠ ∅) |
18 | 17, 11 | wnefimgd 41661 | . . . . 5 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅) |
19 | 18 | necomd 2998 | . . . 4 ⊢ (𝜑 → ∅ ≠ ((abs ∘ 𝐹) “ ℝ)) |
20 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)) |
21 | 19, 20 | neeqtrrd 3017 | . . 3 ⊢ (𝜑 → ∅ ≠ (abs “ (𝐹 “ ℝ))) |
22 | 21 | necomd 2998 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅) |
23 | imo72b2lem2.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
25 | 24 | breq2d 5082 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (𝑣 ≤ 𝑐 ↔ 𝑣 ≤ 𝐶)) |
26 | 25 | ralbidv 3120 | . . 3 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝑐 ↔ ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝐶)) |
27 | imo72b2lem2.3 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹‘𝑧)) ≤ 𝐶) | |
28 | 5, 27 | extoimad 41664 | . . 3 ⊢ (𝜑 → ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝐶) |
29 | 23, 26, 28 | rspcedvd 3555 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ ℝ ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝑐) |
30 | 5, 27 | extoimad 41664 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 𝐶) |
31 | 14, 22, 29, 23, 30 | suprleubrd 41666 | 1 ⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 ran crn 5581 “ cima 5583 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 supcsup 9129 ℂcc 10800 ℝcr 10801 0cc0 10802 < clt 10940 ≤ cle 10941 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: imo72b2 41672 |
Copyright terms: Public domain | W3C validator |