| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imo72b2lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for imo72b2 44211. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| imo72b2lem2.1 | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| imo72b2lem2.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| imo72b2lem2.3 | ⊢ (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹‘𝑧)) ≤ 𝐶) |
| Ref | Expression |
|---|---|
| imo72b2lem2 | ⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaco 6198 | . . . 4 ⊢ ((abs ∘ 𝐹) “ ℝ) = (abs “ (𝐹 “ ℝ)) | |
| 2 | 1 | eqcomi 2740 | . . 3 ⊢ (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ) |
| 3 | imassrn 6020 | . . . . 5 ⊢ ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ran (abs ∘ 𝐹)) |
| 5 | imo72b2lem2.1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
| 6 | absf 15245 | . . . . . . . 8 ⊢ abs:ℂ⟶ℝ | |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → abs:ℂ⟶ℝ) |
| 8 | ax-resscn 11063 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 10 | 7, 9 | fssresd 6690 | . . . . . 6 ⊢ (𝜑 → (abs ↾ ℝ):ℝ⟶ℝ) |
| 11 | 5, 10 | fco2d 44201 | . . . . 5 ⊢ (𝜑 → (abs ∘ 𝐹):ℝ⟶ℝ) |
| 12 | 11 | frnd 6659 | . . . 4 ⊢ (𝜑 → ran (abs ∘ 𝐹) ⊆ ℝ) |
| 13 | 4, 12 | sstrd 3945 | . . 3 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ⊆ ℝ) |
| 14 | 2, 13 | eqsstrid 3973 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ⊆ ℝ) |
| 15 | 0re 11114 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 16 | 15 | ne0ii 4294 | . . . . . . 7 ⊢ ℝ ≠ ∅ |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ≠ ∅) |
| 18 | 17, 11 | wnefimgd 44200 | . . . . 5 ⊢ (𝜑 → ((abs ∘ 𝐹) “ ℝ) ≠ ∅) |
| 19 | 18 | necomd 2983 | . . . 4 ⊢ (𝜑 → ∅ ≠ ((abs ∘ 𝐹) “ ℝ)) |
| 20 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) = ((abs ∘ 𝐹) “ ℝ)) |
| 21 | 19, 20 | neeqtrrd 3002 | . . 3 ⊢ (𝜑 → ∅ ≠ (abs “ (𝐹 “ ℝ))) |
| 22 | 21 | necomd 2983 | . 2 ⊢ (𝜑 → (abs “ (𝐹 “ ℝ)) ≠ ∅) |
| 23 | imo72b2lem2.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
| 25 | 24 | breq2d 5103 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (𝑣 ≤ 𝑐 ↔ 𝑣 ≤ 𝐶)) |
| 26 | 25 | ralbidv 3155 | . . 3 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝑐 ↔ ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝐶)) |
| 27 | imo72b2lem2.3 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ ℝ (abs‘(𝐹‘𝑧)) ≤ 𝐶) | |
| 28 | 5, 27 | extoimad 44203 | . . 3 ⊢ (𝜑 → ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝐶) |
| 29 | 23, 26, 28 | rspcedvd 3579 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ ℝ ∀𝑣 ∈ (abs “ (𝐹 “ ℝ))𝑣 ≤ 𝑐) |
| 30 | 5, 27 | extoimad 44203 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ (abs “ (𝐹 “ ℝ))𝑡 ≤ 𝐶) |
| 31 | 14, 22, 29, 23, 30 | suprleubrd 44205 | 1 ⊢ (𝜑 → sup((abs “ (𝐹 “ ℝ)), ℝ, < ) ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3902 ∅c0 4283 class class class wbr 5091 ran crn 5617 “ cima 5619 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 supcsup 9324 ℂcc 11004 ℝcr 11005 0cc0 11006 < clt 11146 ≤ cle 11147 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: imo72b2 44211 |
| Copyright terms: Public domain | W3C validator |