![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fco2d | Structured version Visualization version GIF version |
Description: Natural deduction form of fco2 6741. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
fco2d.1 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
fco2d.2 | ⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵⟶𝐶) |
Ref | Expression |
---|---|
fco2d | ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fco2d.2 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵⟶𝐶) | |
2 | fco2d.1 | . 2 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
3 | fco2 6741 | . 2 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | |
4 | 1, 2, 3 | syl2anc 585 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↾ cres 5677 ∘ ccom 5679 ⟶wf 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-fun 6542 df-fn 6543 df-f 6544 |
This theorem is referenced by: extoimad 42849 imo72b2lem0 42850 imo72b2lem2 42852 imo72b2lem1 42854 imo72b2 42857 |
Copyright terms: Public domain | W3C validator |