Mathbox for Stanislas Polu < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fco2d Structured version   Visualization version   GIF version

Theorem fco2d 40799
 Description: Natural deduction form of fco2 6514. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
fco2d.1 (𝜑𝐺:𝐴𝐵)
fco2d.2 (𝜑 → (𝐹𝐵):𝐵𝐶)
Assertion
Ref Expression
fco2d (𝜑 → (𝐹𝐺):𝐴𝐶)

Proof of Theorem fco2d
StepHypRef Expression
1 fco2d.2 . 2 (𝜑 → (𝐹𝐵):𝐵𝐶)
2 fco2d.1 . 2 (𝜑𝐺:𝐴𝐵)
3 fco2 6514 . 2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
41, 2, 3syl2anc 587 1 (𝜑 → (𝐹𝐺):𝐴𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↾ cres 5534   ∘ ccom 5536  ⟶wf 6330 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-v 3471  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-br 5043  df-opab 5105  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-fun 6336  df-fn 6337  df-f 6338 This theorem is referenced by:  extoimad  40801  imo72b2lem0  40802  imo72b2lem2  40804  imo72b2lem1  40807  imo72b2  40811
 Copyright terms: Public domain W3C validator