Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fco2d Structured version   Visualization version   GIF version

Theorem fco2d 44153
Description: Natural deduction form of fco2 6737. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
fco2d.1 (𝜑𝐺:𝐴𝐵)
fco2d.2 (𝜑 → (𝐹𝐵):𝐵𝐶)
Assertion
Ref Expression
fco2d (𝜑 → (𝐹𝐺):𝐴𝐶)

Proof of Theorem fco2d
StepHypRef Expression
1 fco2d.2 . 2 (𝜑 → (𝐹𝐵):𝐵𝐶)
2 fco2d.1 . 2 (𝜑𝐺:𝐴𝐵)
3 fco2 6737 . 2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐹𝐺):𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cres 5661  ccom 5663  wf 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-fun 6538  df-fn 6539  df-f 6540
This theorem is referenced by:  extoimad  44155  imo72b2lem0  44156  imo72b2lem2  44158  imo72b2lem1  44160  imo72b2  44163
  Copyright terms: Public domain W3C validator