Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-sategoelel Structured version   Visualization version   GIF version

Theorem ex-sategoelel 35389
Description: Example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.)
Hypotheses
Ref Expression
sategoelfvb.s 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
ex-sategoelel.s 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)))
Assertion
Ref Expression
ex-sategoelel (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆𝐸)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑀   𝑥,𝑍
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem ex-sategoelel
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝑍𝑀)
2 simpl 482 . . . . . . . . 9 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝑀 ∈ WUni)
32, 1wunpw 10776 . . . . . . . 8 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝒫 𝑍𝑀)
42wun0 10787 . . . . . . . 8 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → ∅ ∈ 𝑀)
53, 4ifcld 4594 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → if(𝑥 = 𝐵, 𝒫 𝑍, ∅) ∈ 𝑀)
61, 5ifcld 4594 . . . . . 6 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) ∈ 𝑀)
76adantr 480 . . . . 5 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) ∈ 𝑀)
87adantr 480 . . . 4 ((((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) ∧ 𝑥 ∈ ω) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) ∈ 𝑀)
9 ex-sategoelel.s . . . 4 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)))
108, 9fmptd 7148 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆:ω⟶𝑀)
112adantr 480 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑀 ∈ WUni)
12 omex 9712 . . . . 5 ω ∈ V
1312a1i 11 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → ω ∈ V)
1411, 13elmapd 8898 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆 ∈ (𝑀m ω) ↔ 𝑆:ω⟶𝑀))
1510, 14mpbird 257 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆 ∈ (𝑀m ω))
16 pwidg 4642 . . . . 5 (𝑍𝑀𝑍 ∈ 𝒫 𝑍)
1716adantl 481 . . . 4 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝑍 ∈ 𝒫 𝑍)
1817adantr 480 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑍 ∈ 𝒫 𝑍)
199a1i 11 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))))
20 iftrue 4554 . . . . 5 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = 𝑍)
2120adantl 481 . . . 4 ((((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = 𝑍)
22 simpr1 1194 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ ω)
231adantr 480 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑍𝑀)
2419, 21, 22, 23fvmptd 7036 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐴) = 𝑍)
25 eqeq1 2744 . . . . . . 7 (𝑥 = 𝐵 → (𝑥 = 𝐴𝐵 = 𝐴))
26 eqeq1 2744 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 = 𝐵𝐵 = 𝐵))
2726ifbid 4571 . . . . . . 7 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝒫 𝑍, ∅) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
2825, 27ifbieq2d 4574 . . . . . 6 (𝑥 = 𝐵 → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)))
29 necom 3000 . . . . . . . . 9 (𝐴𝐵𝐵𝐴)
30 ifnefalse 4560 . . . . . . . . 9 (𝐵𝐴 → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
3129, 30sylbi 217 . . . . . . . 8 (𝐴𝐵 → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
32313ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
3332adantl 481 . . . . . 6 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
3428, 33sylan9eqr 2802 . . . . 5 ((((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
35 simpr2 1195 . . . . 5 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐵 ∈ ω)
36 pwexg 5396 . . . . . . . 8 (𝑍𝑀 → 𝒫 𝑍 ∈ V)
3736adantl 481 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝒫 𝑍 ∈ V)
38 0ex 5325 . . . . . . . 8 ∅ ∈ V
3938a1i 11 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → ∅ ∈ V)
4037, 39ifcld 4594 . . . . . 6 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → if(𝐵 = 𝐵, 𝒫 𝑍, ∅) ∈ V)
4140adantr 480 . . . . 5 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → if(𝐵 = 𝐵, 𝒫 𝑍, ∅) ∈ V)
4219, 34, 35, 41fvmptd 7036 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐵) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
43 eqid 2740 . . . . 5 𝐵 = 𝐵
4443iftruei 4555 . . . 4 if(𝐵 = 𝐵, 𝒫 𝑍, ∅) = 𝒫 𝑍
4542, 44eqtrdi 2796 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐵) = 𝒫 𝑍)
4618, 24, 453eltr4d 2859 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐴) ∈ (𝑆𝐵))
47 3simpa 1148 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
48 sategoelfvb.s . . . 4 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
4948sategoelfvb 35387 . . 3 ((𝑀 ∈ WUni ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
502, 47, 49syl2an 595 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
5115, 46, 50mpbir2and 712 1 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  c0 4352  ifcif 4548  𝒫 cpw 4622  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903  m cmap 8884  WUnicwun 10769  𝑔cgoe 35301   Sat csate 35306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-ac 10185  df-wun 10771  df-goel 35308  df-gona 35309  df-goal 35310  df-sat 35311  df-sate 35312  df-fmla 35313
This theorem is referenced by:  ex-sategoel  35390
  Copyright terms: Public domain W3C validator