Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-sategoelel Structured version   Visualization version   GIF version

Theorem ex-sategoelel 35381
Description: Example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.)
Hypotheses
Ref Expression
sategoelfvb.s 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
ex-sategoelel.s 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)))
Assertion
Ref Expression
ex-sategoelel (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆𝐸)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑀   𝑥,𝑍
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem ex-sategoelel
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝑍𝑀)
2 simpl 482 . . . . . . . . 9 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝑀 ∈ WUni)
32, 1wunpw 10636 . . . . . . . 8 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝒫 𝑍𝑀)
42wun0 10647 . . . . . . . 8 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → ∅ ∈ 𝑀)
53, 4ifcld 4531 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → if(𝑥 = 𝐵, 𝒫 𝑍, ∅) ∈ 𝑀)
61, 5ifcld 4531 . . . . . 6 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) ∈ 𝑀)
76adantr 480 . . . . 5 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) ∈ 𝑀)
87adantr 480 . . . 4 ((((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) ∧ 𝑥 ∈ ω) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) ∈ 𝑀)
9 ex-sategoelel.s . . . 4 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)))
108, 9fmptd 7068 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆:ω⟶𝑀)
112adantr 480 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑀 ∈ WUni)
12 omex 9572 . . . . 5 ω ∈ V
1312a1i 11 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → ω ∈ V)
1411, 13elmapd 8790 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆 ∈ (𝑀m ω) ↔ 𝑆:ω⟶𝑀))
1510, 14mpbird 257 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆 ∈ (𝑀m ω))
16 pwidg 4579 . . . . 5 (𝑍𝑀𝑍 ∈ 𝒫 𝑍)
1716adantl 481 . . . 4 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝑍 ∈ 𝒫 𝑍)
1817adantr 480 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑍 ∈ 𝒫 𝑍)
199a1i 11 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))))
20 iftrue 4490 . . . . 5 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = 𝑍)
2120adantl 481 . . . 4 ((((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = 𝑍)
22 simpr1 1195 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ ω)
231adantr 480 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑍𝑀)
2419, 21, 22, 23fvmptd 6957 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐴) = 𝑍)
25 eqeq1 2733 . . . . . . 7 (𝑥 = 𝐵 → (𝑥 = 𝐴𝐵 = 𝐴))
26 eqeq1 2733 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 = 𝐵𝐵 = 𝐵))
2726ifbid 4508 . . . . . . 7 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝒫 𝑍, ∅) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
2825, 27ifbieq2d 4511 . . . . . 6 (𝑥 = 𝐵 → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)))
29 necom 2978 . . . . . . . . 9 (𝐴𝐵𝐵𝐴)
30 ifnefalse 4496 . . . . . . . . 9 (𝐵𝐴 → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
3129, 30sylbi 217 . . . . . . . 8 (𝐴𝐵 → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
32313ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
3332adantl 481 . . . . . 6 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
3428, 33sylan9eqr 2786 . . . . 5 ((((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
35 simpr2 1196 . . . . 5 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐵 ∈ ω)
36 pwexg 5328 . . . . . . . 8 (𝑍𝑀 → 𝒫 𝑍 ∈ V)
3736adantl 481 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝒫 𝑍 ∈ V)
38 0ex 5257 . . . . . . . 8 ∅ ∈ V
3938a1i 11 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → ∅ ∈ V)
4037, 39ifcld 4531 . . . . . 6 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → if(𝐵 = 𝐵, 𝒫 𝑍, ∅) ∈ V)
4140adantr 480 . . . . 5 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → if(𝐵 = 𝐵, 𝒫 𝑍, ∅) ∈ V)
4219, 34, 35, 41fvmptd 6957 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐵) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
43 eqid 2729 . . . . 5 𝐵 = 𝐵
4443iftruei 4491 . . . 4 if(𝐵 = 𝐵, 𝒫 𝑍, ∅) = 𝒫 𝑍
4542, 44eqtrdi 2780 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐵) = 𝒫 𝑍)
4618, 24, 453eltr4d 2843 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐴) ∈ (𝑆𝐵))
47 3simpa 1148 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
48 sategoelfvb.s . . . 4 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
4948sategoelfvb 35379 . . 3 ((𝑀 ∈ WUni ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
502, 47, 49syl2an 596 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
5115, 46, 50mpbir2and 713 1 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  c0 4292  ifcif 4484  𝒫 cpw 4559  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  ωcom 7822  m cmap 8776  WUnicwun 10629  𝑔cgoe 35293   Sat csate 35298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-ac 10045  df-wun 10631  df-goel 35300  df-gona 35301  df-goal 35302  df-sat 35303  df-sate 35304  df-fmla 35305
This theorem is referenced by:  ex-sategoel  35382
  Copyright terms: Public domain W3C validator