Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-sategoelel Structured version   Visualization version   GIF version

Theorem ex-sategoelel 35443
Description: Example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023.)
Hypotheses
Ref Expression
sategoelfvb.s 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
ex-sategoelel.s 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)))
Assertion
Ref Expression
ex-sategoelel (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆𝐸)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑀   𝑥,𝑍
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem ex-sategoelel
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝑍𝑀)
2 simpl 482 . . . . . . . . 9 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝑀 ∈ WUni)
32, 1wunpw 10721 . . . . . . . 8 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝒫 𝑍𝑀)
42wun0 10732 . . . . . . . 8 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → ∅ ∈ 𝑀)
53, 4ifcld 4547 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → if(𝑥 = 𝐵, 𝒫 𝑍, ∅) ∈ 𝑀)
61, 5ifcld 4547 . . . . . 6 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) ∈ 𝑀)
76adantr 480 . . . . 5 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) ∈ 𝑀)
87adantr 480 . . . 4 ((((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) ∧ 𝑥 ∈ ω) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) ∈ 𝑀)
9 ex-sategoelel.s . . . 4 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)))
108, 9fmptd 7104 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆:ω⟶𝑀)
112adantr 480 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑀 ∈ WUni)
12 omex 9657 . . . . 5 ω ∈ V
1312a1i 11 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → ω ∈ V)
1411, 13elmapd 8854 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆 ∈ (𝑀m ω) ↔ 𝑆:ω⟶𝑀))
1510, 14mpbird 257 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆 ∈ (𝑀m ω))
16 pwidg 4595 . . . . 5 (𝑍𝑀𝑍 ∈ 𝒫 𝑍)
1716adantl 481 . . . 4 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝑍 ∈ 𝒫 𝑍)
1817adantr 480 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑍 ∈ 𝒫 𝑍)
199a1i 11 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅))))
20 iftrue 4506 . . . . 5 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = 𝑍)
2120adantl 481 . . . 4 ((((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = 𝑍)
22 simpr1 1195 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ ω)
231adantr 480 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑍𝑀)
2419, 21, 22, 23fvmptd 6993 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐴) = 𝑍)
25 eqeq1 2739 . . . . . . 7 (𝑥 = 𝐵 → (𝑥 = 𝐴𝐵 = 𝐴))
26 eqeq1 2739 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 = 𝐵𝐵 = 𝐵))
2726ifbid 4524 . . . . . . 7 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝒫 𝑍, ∅) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
2825, 27ifbieq2d 4527 . . . . . 6 (𝑥 = 𝐵 → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)))
29 necom 2985 . . . . . . . . 9 (𝐴𝐵𝐵𝐴)
30 ifnefalse 4512 . . . . . . . . 9 (𝐵𝐴 → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
3129, 30sylbi 217 . . . . . . . 8 (𝐴𝐵 → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
32313ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
3332adantl 481 . . . . . 6 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → if(𝐵 = 𝐴, 𝑍, if(𝐵 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
3428, 33sylan9eqr 2792 . . . . 5 ((((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑍, if(𝑥 = 𝐵, 𝒫 𝑍, ∅)) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
35 simpr2 1196 . . . . 5 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐵 ∈ ω)
36 pwexg 5348 . . . . . . . 8 (𝑍𝑀 → 𝒫 𝑍 ∈ V)
3736adantl 481 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → 𝒫 𝑍 ∈ V)
38 0ex 5277 . . . . . . . 8 ∅ ∈ V
3938a1i 11 . . . . . . 7 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → ∅ ∈ V)
4037, 39ifcld 4547 . . . . . 6 ((𝑀 ∈ WUni ∧ 𝑍𝑀) → if(𝐵 = 𝐵, 𝒫 𝑍, ∅) ∈ V)
4140adantr 480 . . . . 5 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → if(𝐵 = 𝐵, 𝒫 𝑍, ∅) ∈ V)
4219, 34, 35, 41fvmptd 6993 . . . 4 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐵) = if(𝐵 = 𝐵, 𝒫 𝑍, ∅))
43 eqid 2735 . . . . 5 𝐵 = 𝐵
4443iftruei 4507 . . . 4 if(𝐵 = 𝐵, 𝒫 𝑍, ∅) = 𝒫 𝑍
4542, 44eqtrdi 2786 . . 3 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐵) = 𝒫 𝑍)
4618, 24, 453eltr4d 2849 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐴) ∈ (𝑆𝐵))
47 3simpa 1148 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
48 sategoelfvb.s . . . 4 𝐸 = (𝑀 Sat (𝐴𝑔𝐵))
4948sategoelfvb 35441 . . 3 ((𝑀 ∈ WUni ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
502, 47, 49syl2an 596 . 2 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝑆𝐸 ↔ (𝑆 ∈ (𝑀m ω) ∧ (𝑆𝐴) ∈ (𝑆𝐵))))
5115, 46, 50mpbir2and 713 1 (((𝑀 ∈ WUni ∧ 𝑍𝑀) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑆𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  c0 4308  ifcif 4500  𝒫 cpw 4575  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  ωcom 7861  m cmap 8840  WUnicwun 10714  𝑔cgoe 35355   Sat csate 35360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-ac2 10477
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-ac 10130  df-wun 10716  df-goel 35362  df-gona 35363  df-goal 35364  df-sat 35365  df-sate 35366  df-fmla 35367
This theorem is referenced by:  ex-sategoel  35444
  Copyright terms: Public domain W3C validator