MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunr1om Structured version   Visualization version   GIF version

Theorem wunr1om 10696
Description: A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
Assertion
Ref Expression
wunr1om (𝜑 → (𝑅1 “ ω) ⊆ 𝑈)

Proof of Theorem wunr1om
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6878 . . . . . . 7 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
21eleq1d 2817 . . . . . 6 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1‘∅) ∈ 𝑈))
3 fveq2 6878 . . . . . . 7 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
43eleq1d 2817 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1𝑦) ∈ 𝑈))
5 fveq2 6878 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
65eleq1d 2817 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1‘suc 𝑦) ∈ 𝑈))
7 r10 9745 . . . . . . 7 (𝑅1‘∅) = ∅
8 wun0.1 . . . . . . . 8 (𝜑𝑈 ∈ WUni)
98wun0 10695 . . . . . . 7 (𝜑 → ∅ ∈ 𝑈)
107, 9eqeltrid 2836 . . . . . 6 (𝜑 → (𝑅1‘∅) ∈ 𝑈)
118adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → 𝑈 ∈ WUni)
12 simpr 485 . . . . . . . . 9 ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈)
1311, 12wunpw 10684 . . . . . . . 8 ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → 𝒫 (𝑅1𝑦) ∈ 𝑈)
14 nnon 7844 . . . . . . . . . 10 (𝑦 ∈ ω → 𝑦 ∈ On)
15 r1suc 9747 . . . . . . . . . 10 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1614, 15syl 17 . . . . . . . . 9 (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1716eleq1d 2817 . . . . . . . 8 (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑈 ↔ 𝒫 (𝑅1𝑦) ∈ 𝑈))
1813, 17imbitrrid 245 . . . . . . 7 (𝑦 ∈ ω → ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → (𝑅1‘suc 𝑦) ∈ 𝑈))
1918expd 416 . . . . . 6 (𝑦 ∈ ω → (𝜑 → ((𝑅1𝑦) ∈ 𝑈 → (𝑅1‘suc 𝑦) ∈ 𝑈)))
202, 4, 6, 10, 19finds2 7873 . . . . 5 (𝑥 ∈ ω → (𝜑 → (𝑅1𝑥) ∈ 𝑈))
21 eleq1 2820 . . . . . 6 ((𝑅1𝑥) = 𝑦 → ((𝑅1𝑥) ∈ 𝑈𝑦𝑈))
2221imbi2d 340 . . . . 5 ((𝑅1𝑥) = 𝑦 → ((𝜑 → (𝑅1𝑥) ∈ 𝑈) ↔ (𝜑𝑦𝑈)))
2320, 22syl5ibcom 244 . . . 4 (𝑥 ∈ ω → ((𝑅1𝑥) = 𝑦 → (𝜑𝑦𝑈)))
2423rexlimiv 3147 . . 3 (∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦 → (𝜑𝑦𝑈))
25 r1fnon 9744 . . . . 5 𝑅1 Fn On
26 fnfun 6638 . . . . 5 (𝑅1 Fn On → Fun 𝑅1)
2725, 26ax-mp 5 . . . 4 Fun 𝑅1
28 fvelima 6944 . . . 4 ((Fun 𝑅1𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
2927, 28mpan 688 . . 3 (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
3024, 29syl11 33 . 2 (𝜑 → (𝑦 ∈ (𝑅1 “ ω) → 𝑦𝑈))
3130ssrdv 3984 1 (𝜑 → (𝑅1 “ ω) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3069  wss 3944  c0 4318  𝒫 cpw 4596  cima 5672  Oncon0 6353  suc csuc 6355  Fun wfun 6526   Fn wfn 6527  cfv 6532  ωcom 7838  𝑅1cr1 9739  WUnicwun 10677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-r1 9741  df-wun 10679
This theorem is referenced by:  wunom  10697
  Copyright terms: Public domain W3C validator