MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunr1om Structured version   Visualization version   GIF version

Theorem wunr1om 10733
Description: A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
Assertion
Ref Expression
wunr1om (𝜑 → (𝑅1 “ ω) ⊆ 𝑈)

Proof of Theorem wunr1om
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . . . . . 7 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
21eleq1d 2819 . . . . . 6 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1‘∅) ∈ 𝑈))
3 fveq2 6876 . . . . . . 7 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
43eleq1d 2819 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1𝑦) ∈ 𝑈))
5 fveq2 6876 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
65eleq1d 2819 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1‘suc 𝑦) ∈ 𝑈))
7 r10 9782 . . . . . . 7 (𝑅1‘∅) = ∅
8 wun0.1 . . . . . . . 8 (𝜑𝑈 ∈ WUni)
98wun0 10732 . . . . . . 7 (𝜑 → ∅ ∈ 𝑈)
107, 9eqeltrid 2838 . . . . . 6 (𝜑 → (𝑅1‘∅) ∈ 𝑈)
118adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → 𝑈 ∈ WUni)
12 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈)
1311, 12wunpw 10721 . . . . . . . 8 ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → 𝒫 (𝑅1𝑦) ∈ 𝑈)
14 nnon 7867 . . . . . . . . . 10 (𝑦 ∈ ω → 𝑦 ∈ On)
15 r1suc 9784 . . . . . . . . . 10 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1614, 15syl 17 . . . . . . . . 9 (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1716eleq1d 2819 . . . . . . . 8 (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑈 ↔ 𝒫 (𝑅1𝑦) ∈ 𝑈))
1813, 17imbitrrid 246 . . . . . . 7 (𝑦 ∈ ω → ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → (𝑅1‘suc 𝑦) ∈ 𝑈))
1918expd 415 . . . . . 6 (𝑦 ∈ ω → (𝜑 → ((𝑅1𝑦) ∈ 𝑈 → (𝑅1‘suc 𝑦) ∈ 𝑈)))
202, 4, 6, 10, 19finds2 7894 . . . . 5 (𝑥 ∈ ω → (𝜑 → (𝑅1𝑥) ∈ 𝑈))
21 eleq1 2822 . . . . . 6 ((𝑅1𝑥) = 𝑦 → ((𝑅1𝑥) ∈ 𝑈𝑦𝑈))
2221imbi2d 340 . . . . 5 ((𝑅1𝑥) = 𝑦 → ((𝜑 → (𝑅1𝑥) ∈ 𝑈) ↔ (𝜑𝑦𝑈)))
2320, 22syl5ibcom 245 . . . 4 (𝑥 ∈ ω → ((𝑅1𝑥) = 𝑦 → (𝜑𝑦𝑈)))
2423rexlimiv 3134 . . 3 (∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦 → (𝜑𝑦𝑈))
25 r1fnon 9781 . . . . 5 𝑅1 Fn On
26 fnfun 6638 . . . . 5 (𝑅1 Fn On → Fun 𝑅1)
2725, 26ax-mp 5 . . . 4 Fun 𝑅1
28 fvelima 6944 . . . 4 ((Fun 𝑅1𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
2927, 28mpan 690 . . 3 (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
3024, 29syl11 33 . 2 (𝜑 → (𝑦 ∈ (𝑅1 “ ω) → 𝑦𝑈))
3130ssrdv 3964 1 (𝜑 → (𝑅1 “ ω) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3060  wss 3926  c0 4308  𝒫 cpw 4575  cima 5657  Oncon0 6352  suc csuc 6354  Fun wfun 6525   Fn wfn 6526  cfv 6531  ωcom 7861  𝑅1cr1 9776  WUnicwun 10714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-r1 9778  df-wun 10716
This theorem is referenced by:  wunom  10734
  Copyright terms: Public domain W3C validator