![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunr1om | Structured version Visualization version GIF version |
Description: A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
Ref | Expression |
---|---|
wunr1om | ⊢ (𝜑 → (𝑅1 “ ω) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6902 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑅1‘𝑥) = (𝑅1‘∅)) | |
2 | 1 | eleq1d 2814 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑅1‘𝑥) ∈ 𝑈 ↔ (𝑅1‘∅) ∈ 𝑈)) |
3 | fveq2 6902 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑅1‘𝑥) = (𝑅1‘𝑦)) | |
4 | 3 | eleq1d 2814 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑈 ↔ (𝑅1‘𝑦) ∈ 𝑈)) |
5 | fveq2 6902 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝑅1‘𝑥) = (𝑅1‘suc 𝑦)) | |
6 | 5 | eleq1d 2814 | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → ((𝑅1‘𝑥) ∈ 𝑈 ↔ (𝑅1‘suc 𝑦) ∈ 𝑈)) |
7 | r10 9799 | . . . . . . 7 ⊢ (𝑅1‘∅) = ∅ | |
8 | wun0.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
9 | 8 | wun0 10749 | . . . . . . 7 ⊢ (𝜑 → ∅ ∈ 𝑈) |
10 | 7, 9 | eqeltrid 2833 | . . . . . 6 ⊢ (𝜑 → (𝑅1‘∅) ∈ 𝑈) |
11 | 8 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑅1‘𝑦) ∈ 𝑈) → 𝑈 ∈ WUni) |
12 | simpr 483 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑅1‘𝑦) ∈ 𝑈) → (𝑅1‘𝑦) ∈ 𝑈) | |
13 | 11, 12 | wunpw 10738 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑅1‘𝑦) ∈ 𝑈) → 𝒫 (𝑅1‘𝑦) ∈ 𝑈) |
14 | nnon 7882 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ω → 𝑦 ∈ On) | |
15 | r1suc 9801 | . . . . . . . . . 10 ⊢ (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) | |
16 | 14, 15 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) |
17 | 16 | eleq1d 2814 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑈 ↔ 𝒫 (𝑅1‘𝑦) ∈ 𝑈)) |
18 | 13, 17 | imbitrrid 245 | . . . . . . 7 ⊢ (𝑦 ∈ ω → ((𝜑 ∧ (𝑅1‘𝑦) ∈ 𝑈) → (𝑅1‘suc 𝑦) ∈ 𝑈)) |
19 | 18 | expd 414 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝜑 → ((𝑅1‘𝑦) ∈ 𝑈 → (𝑅1‘suc 𝑦) ∈ 𝑈))) |
20 | 2, 4, 6, 10, 19 | finds2 7912 | . . . . 5 ⊢ (𝑥 ∈ ω → (𝜑 → (𝑅1‘𝑥) ∈ 𝑈)) |
21 | eleq1 2817 | . . . . . 6 ⊢ ((𝑅1‘𝑥) = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑈 ↔ 𝑦 ∈ 𝑈)) | |
22 | 21 | imbi2d 339 | . . . . 5 ⊢ ((𝑅1‘𝑥) = 𝑦 → ((𝜑 → (𝑅1‘𝑥) ∈ 𝑈) ↔ (𝜑 → 𝑦 ∈ 𝑈))) |
23 | 20, 22 | syl5ibcom 244 | . . . 4 ⊢ (𝑥 ∈ ω → ((𝑅1‘𝑥) = 𝑦 → (𝜑 → 𝑦 ∈ 𝑈))) |
24 | 23 | rexlimiv 3145 | . . 3 ⊢ (∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦 → (𝜑 → 𝑦 ∈ 𝑈)) |
25 | r1fnon 9798 | . . . . 5 ⊢ 𝑅1 Fn On | |
26 | fnfun 6659 | . . . . 5 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
27 | 25, 26 | ax-mp 5 | . . . 4 ⊢ Fun 𝑅1 |
28 | fvelima 6969 | . . . 4 ⊢ ((Fun 𝑅1 ∧ 𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) | |
29 | 27, 28 | mpan 688 | . . 3 ⊢ (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) |
30 | 24, 29 | syl11 33 | . 2 ⊢ (𝜑 → (𝑦 ∈ (𝑅1 “ ω) → 𝑦 ∈ 𝑈)) |
31 | 30 | ssrdv 3988 | 1 ⊢ (𝜑 → (𝑅1 “ ω) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3067 ⊆ wss 3949 ∅c0 4326 𝒫 cpw 4606 “ cima 5685 Oncon0 6374 suc csuc 6376 Fun wfun 6547 Fn wfn 6548 ‘cfv 6553 ωcom 7876 𝑅1cr1 9793 WUnicwun 10731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-r1 9795 df-wun 10733 |
This theorem is referenced by: wunom 10751 |
Copyright terms: Public domain | W3C validator |