![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunr1om | Structured version Visualization version GIF version |
Description: A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
Ref | Expression |
---|---|
wunr1om | ⊢ (𝜑 → (𝑅1 “ ω) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6906 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑅1‘𝑥) = (𝑅1‘∅)) | |
2 | 1 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝑅1‘𝑥) ∈ 𝑈 ↔ (𝑅1‘∅) ∈ 𝑈)) |
3 | fveq2 6906 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑅1‘𝑥) = (𝑅1‘𝑦)) | |
4 | 3 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑈 ↔ (𝑅1‘𝑦) ∈ 𝑈)) |
5 | fveq2 6906 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝑅1‘𝑥) = (𝑅1‘suc 𝑦)) | |
6 | 5 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → ((𝑅1‘𝑥) ∈ 𝑈 ↔ (𝑅1‘suc 𝑦) ∈ 𝑈)) |
7 | r10 9805 | . . . . . . 7 ⊢ (𝑅1‘∅) = ∅ | |
8 | wun0.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
9 | 8 | wun0 10755 | . . . . . . 7 ⊢ (𝜑 → ∅ ∈ 𝑈) |
10 | 7, 9 | eqeltrid 2842 | . . . . . 6 ⊢ (𝜑 → (𝑅1‘∅) ∈ 𝑈) |
11 | 8 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑅1‘𝑦) ∈ 𝑈) → 𝑈 ∈ WUni) |
12 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑅1‘𝑦) ∈ 𝑈) → (𝑅1‘𝑦) ∈ 𝑈) | |
13 | 11, 12 | wunpw 10744 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑅1‘𝑦) ∈ 𝑈) → 𝒫 (𝑅1‘𝑦) ∈ 𝑈) |
14 | nnon 7892 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ω → 𝑦 ∈ On) | |
15 | r1suc 9807 | . . . . . . . . . 10 ⊢ (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) | |
16 | 14, 15 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1‘𝑦)) |
17 | 16 | eleq1d 2823 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑈 ↔ 𝒫 (𝑅1‘𝑦) ∈ 𝑈)) |
18 | 13, 17 | imbitrrid 246 | . . . . . . 7 ⊢ (𝑦 ∈ ω → ((𝜑 ∧ (𝑅1‘𝑦) ∈ 𝑈) → (𝑅1‘suc 𝑦) ∈ 𝑈)) |
19 | 18 | expd 415 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝜑 → ((𝑅1‘𝑦) ∈ 𝑈 → (𝑅1‘suc 𝑦) ∈ 𝑈))) |
20 | 2, 4, 6, 10, 19 | finds2 7920 | . . . . 5 ⊢ (𝑥 ∈ ω → (𝜑 → (𝑅1‘𝑥) ∈ 𝑈)) |
21 | eleq1 2826 | . . . . . 6 ⊢ ((𝑅1‘𝑥) = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑈 ↔ 𝑦 ∈ 𝑈)) | |
22 | 21 | imbi2d 340 | . . . . 5 ⊢ ((𝑅1‘𝑥) = 𝑦 → ((𝜑 → (𝑅1‘𝑥) ∈ 𝑈) ↔ (𝜑 → 𝑦 ∈ 𝑈))) |
23 | 20, 22 | syl5ibcom 245 | . . . 4 ⊢ (𝑥 ∈ ω → ((𝑅1‘𝑥) = 𝑦 → (𝜑 → 𝑦 ∈ 𝑈))) |
24 | 23 | rexlimiv 3145 | . . 3 ⊢ (∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦 → (𝜑 → 𝑦 ∈ 𝑈)) |
25 | r1fnon 9804 | . . . . 5 ⊢ 𝑅1 Fn On | |
26 | fnfun 6668 | . . . . 5 ⊢ (𝑅1 Fn On → Fun 𝑅1) | |
27 | 25, 26 | ax-mp 5 | . . . 4 ⊢ Fun 𝑅1 |
28 | fvelima 6973 | . . . 4 ⊢ ((Fun 𝑅1 ∧ 𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) | |
29 | 27, 28 | mpan 690 | . . 3 ⊢ (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1‘𝑥) = 𝑦) |
30 | 24, 29 | syl11 33 | . 2 ⊢ (𝜑 → (𝑦 ∈ (𝑅1 “ ω) → 𝑦 ∈ 𝑈)) |
31 | 30 | ssrdv 4000 | 1 ⊢ (𝜑 → (𝑅1 “ ω) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 ⊆ wss 3962 ∅c0 4338 𝒫 cpw 4604 “ cima 5691 Oncon0 6385 suc csuc 6387 Fun wfun 6556 Fn wfn 6557 ‘cfv 6562 ωcom 7886 𝑅1cr1 9799 WUnicwun 10737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-r1 9801 df-wun 10739 |
This theorem is referenced by: wunom 10757 |
Copyright terms: Public domain | W3C validator |