MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunr1om Structured version   Visualization version   GIF version

Theorem wunr1om 10613
Description: A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
Assertion
Ref Expression
wunr1om (𝜑 → (𝑅1 “ ω) ⊆ 𝑈)

Proof of Theorem wunr1om
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . . . 7 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
21eleq1d 2813 . . . . . 6 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1‘∅) ∈ 𝑈))
3 fveq2 6822 . . . . . . 7 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
43eleq1d 2813 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1𝑦) ∈ 𝑈))
5 fveq2 6822 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
65eleq1d 2813 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1‘suc 𝑦) ∈ 𝑈))
7 r10 9664 . . . . . . 7 (𝑅1‘∅) = ∅
8 wun0.1 . . . . . . . 8 (𝜑𝑈 ∈ WUni)
98wun0 10612 . . . . . . 7 (𝜑 → ∅ ∈ 𝑈)
107, 9eqeltrid 2832 . . . . . 6 (𝜑 → (𝑅1‘∅) ∈ 𝑈)
118adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → 𝑈 ∈ WUni)
12 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈)
1311, 12wunpw 10601 . . . . . . . 8 ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → 𝒫 (𝑅1𝑦) ∈ 𝑈)
14 nnon 7805 . . . . . . . . . 10 (𝑦 ∈ ω → 𝑦 ∈ On)
15 r1suc 9666 . . . . . . . . . 10 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1614, 15syl 17 . . . . . . . . 9 (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1716eleq1d 2813 . . . . . . . 8 (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑈 ↔ 𝒫 (𝑅1𝑦) ∈ 𝑈))
1813, 17imbitrrid 246 . . . . . . 7 (𝑦 ∈ ω → ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → (𝑅1‘suc 𝑦) ∈ 𝑈))
1918expd 415 . . . . . 6 (𝑦 ∈ ω → (𝜑 → ((𝑅1𝑦) ∈ 𝑈 → (𝑅1‘suc 𝑦) ∈ 𝑈)))
202, 4, 6, 10, 19finds2 7831 . . . . 5 (𝑥 ∈ ω → (𝜑 → (𝑅1𝑥) ∈ 𝑈))
21 eleq1 2816 . . . . . 6 ((𝑅1𝑥) = 𝑦 → ((𝑅1𝑥) ∈ 𝑈𝑦𝑈))
2221imbi2d 340 . . . . 5 ((𝑅1𝑥) = 𝑦 → ((𝜑 → (𝑅1𝑥) ∈ 𝑈) ↔ (𝜑𝑦𝑈)))
2320, 22syl5ibcom 245 . . . 4 (𝑥 ∈ ω → ((𝑅1𝑥) = 𝑦 → (𝜑𝑦𝑈)))
2423rexlimiv 3123 . . 3 (∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦 → (𝜑𝑦𝑈))
25 r1fnon 9663 . . . . 5 𝑅1 Fn On
26 fnfun 6582 . . . . 5 (𝑅1 Fn On → Fun 𝑅1)
2725, 26ax-mp 5 . . . 4 Fun 𝑅1
28 fvelima 6888 . . . 4 ((Fun 𝑅1𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
2927, 28mpan 690 . . 3 (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
3024, 29syl11 33 . 2 (𝜑 → (𝑦 ∈ (𝑅1 “ ω) → 𝑦𝑈))
3130ssrdv 3941 1 (𝜑 → (𝑅1 “ ω) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3903  c0 4284  𝒫 cpw 4551  cima 5622  Oncon0 6307  suc csuc 6309  Fun wfun 6476   Fn wfn 6477  cfv 6482  ωcom 7799  𝑅1cr1 9658  WUnicwun 10594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660  df-wun 10596
This theorem is referenced by:  wunom  10614
  Copyright terms: Public domain W3C validator