MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunr1om Structured version   Visualization version   GIF version

Theorem wunr1om 10713
Description: A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
Assertion
Ref Expression
wunr1om (𝜑 → (𝑅1 “ ω) ⊆ 𝑈)

Proof of Theorem wunr1om
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6884 . . . . . . 7 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
21eleq1d 2812 . . . . . 6 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1‘∅) ∈ 𝑈))
3 fveq2 6884 . . . . . . 7 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
43eleq1d 2812 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1𝑦) ∈ 𝑈))
5 fveq2 6884 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
65eleq1d 2812 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1‘suc 𝑦) ∈ 𝑈))
7 r10 9762 . . . . . . 7 (𝑅1‘∅) = ∅
8 wun0.1 . . . . . . . 8 (𝜑𝑈 ∈ WUni)
98wun0 10712 . . . . . . 7 (𝜑 → ∅ ∈ 𝑈)
107, 9eqeltrid 2831 . . . . . 6 (𝜑 → (𝑅1‘∅) ∈ 𝑈)
118adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → 𝑈 ∈ WUni)
12 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈)
1311, 12wunpw 10701 . . . . . . . 8 ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → 𝒫 (𝑅1𝑦) ∈ 𝑈)
14 nnon 7857 . . . . . . . . . 10 (𝑦 ∈ ω → 𝑦 ∈ On)
15 r1suc 9764 . . . . . . . . . 10 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1614, 15syl 17 . . . . . . . . 9 (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1716eleq1d 2812 . . . . . . . 8 (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑈 ↔ 𝒫 (𝑅1𝑦) ∈ 𝑈))
1813, 17imbitrrid 245 . . . . . . 7 (𝑦 ∈ ω → ((𝜑 ∧ (𝑅1𝑦) ∈ 𝑈) → (𝑅1‘suc 𝑦) ∈ 𝑈))
1918expd 415 . . . . . 6 (𝑦 ∈ ω → (𝜑 → ((𝑅1𝑦) ∈ 𝑈 → (𝑅1‘suc 𝑦) ∈ 𝑈)))
202, 4, 6, 10, 19finds2 7887 . . . . 5 (𝑥 ∈ ω → (𝜑 → (𝑅1𝑥) ∈ 𝑈))
21 eleq1 2815 . . . . . 6 ((𝑅1𝑥) = 𝑦 → ((𝑅1𝑥) ∈ 𝑈𝑦𝑈))
2221imbi2d 340 . . . . 5 ((𝑅1𝑥) = 𝑦 → ((𝜑 → (𝑅1𝑥) ∈ 𝑈) ↔ (𝜑𝑦𝑈)))
2320, 22syl5ibcom 244 . . . 4 (𝑥 ∈ ω → ((𝑅1𝑥) = 𝑦 → (𝜑𝑦𝑈)))
2423rexlimiv 3142 . . 3 (∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦 → (𝜑𝑦𝑈))
25 r1fnon 9761 . . . . 5 𝑅1 Fn On
26 fnfun 6642 . . . . 5 (𝑅1 Fn On → Fun 𝑅1)
2725, 26ax-mp 5 . . . 4 Fun 𝑅1
28 fvelima 6950 . . . 4 ((Fun 𝑅1𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
2927, 28mpan 687 . . 3 (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
3024, 29syl11 33 . 2 (𝜑 → (𝑦 ∈ (𝑅1 “ ω) → 𝑦𝑈))
3130ssrdv 3983 1 (𝜑 → (𝑅1 “ ω) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wrex 3064  wss 3943  c0 4317  𝒫 cpw 4597  cima 5672  Oncon0 6357  suc csuc 6359  Fun wfun 6530   Fn wfn 6531  cfv 6536  ωcom 7851  𝑅1cr1 9756  WUnicwun 10694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-r1 9758  df-wun 10696
This theorem is referenced by:  wunom  10714
  Copyright terms: Public domain W3C validator