Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) →
(𝑅1‘𝐴) ∈ WUni) |
2 | 1 | wun0 10405 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) → ∅
∈ (𝑅1‘𝐴)) |
3 | | elfvdm 6788 |
. . . . . 6
⊢ (∅
∈ (𝑅1‘𝐴) → 𝐴 ∈ dom
𝑅1) |
4 | 2, 3 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) → 𝐴 ∈ dom
𝑅1) |
5 | | r1fnon 9456 |
. . . . . 6
⊢
𝑅1 Fn On |
6 | 5 | fndmi 6521 |
. . . . 5
⊢ dom
𝑅1 = On |
7 | 4, 6 | eleqtrdi 2849 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) → 𝐴 ∈ On) |
8 | | eloni 6261 |
. . . 4
⊢ (𝐴 ∈ On → Ord 𝐴) |
9 | 7, 8 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) → Ord 𝐴) |
10 | | n0i 4264 |
. . . . . 6
⊢ (∅
∈ (𝑅1‘𝐴) → ¬
(𝑅1‘𝐴) = ∅) |
11 | 2, 10 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) → ¬
(𝑅1‘𝐴) = ∅) |
12 | | fveq2 6756 |
. . . . . 6
⊢ (𝐴 = ∅ →
(𝑅1‘𝐴) =
(𝑅1‘∅)) |
13 | | r10 9457 |
. . . . . 6
⊢
(𝑅1‘∅) = ∅ |
14 | 12, 13 | eqtrdi 2795 |
. . . . 5
⊢ (𝐴 = ∅ →
(𝑅1‘𝐴) = ∅) |
15 | 11, 14 | nsyl 140 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) → ¬
𝐴 =
∅) |
16 | | suceloni 7635 |
. . . . . . . 8
⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
17 | 7, 16 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) → suc 𝐴 ∈ On) |
18 | | sucidg 6329 |
. . . . . . . 8
⊢ (𝐴 ∈ On → 𝐴 ∈ suc 𝐴) |
19 | 7, 18 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) → 𝐴 ∈ suc 𝐴) |
20 | | r1ord 9469 |
. . . . . . 7
⊢ (suc
𝐴 ∈ On → (𝐴 ∈ suc 𝐴 → (𝑅1‘𝐴) ∈
(𝑅1‘suc 𝐴))) |
21 | 17, 19, 20 | sylc 65 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) →
(𝑅1‘𝐴) ∈ (𝑅1‘suc
𝐴)) |
22 | | r1elwf 9485 |
. . . . . 6
⊢
((𝑅1‘𝐴) ∈ (𝑅1‘suc
𝐴) →
(𝑅1‘𝐴) ∈ ∪
(𝑅1 “ On)) |
23 | | wfelirr 9514 |
. . . . . 6
⊢
((𝑅1‘𝐴) ∈ ∪
(𝑅1 “ On) → ¬
(𝑅1‘𝐴) ∈ (𝑅1‘𝐴)) |
24 | 21, 22, 23 | 3syl 18 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) → ¬
(𝑅1‘𝐴) ∈ (𝑅1‘𝐴)) |
25 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝐴 = suc 𝑥) |
26 | 25 | fveq2d 6760 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1‘𝐴) =
(𝑅1‘suc 𝑥)) |
27 | | r1suc 9459 |
. . . . . . . . 9
⊢ (𝑥 ∈ On →
(𝑅1‘suc 𝑥) = 𝒫
(𝑅1‘𝑥)) |
28 | 27 | ad2antrl 724 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1‘suc
𝑥) = 𝒫
(𝑅1‘𝑥)) |
29 | 26, 28 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1‘𝐴) = 𝒫
(𝑅1‘𝑥)) |
30 | | simplr 765 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1‘𝐴) ∈ WUni) |
31 | 7 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝐴 ∈ On) |
32 | | sucidg 6329 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → 𝑥 ∈ suc 𝑥) |
33 | 32 | ad2antrl 724 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝑥 ∈ suc 𝑥) |
34 | 33, 25 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝑥 ∈ 𝐴) |
35 | | r1ord 9469 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → (𝑅1‘𝑥) ∈
(𝑅1‘𝐴))) |
36 | 31, 34, 35 | sylc 65 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1‘𝑥) ∈
(𝑅1‘𝐴)) |
37 | 30, 36 | wunpw 10394 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝒫
(𝑅1‘𝑥) ∈ (𝑅1‘𝐴)) |
38 | 29, 37 | eqeltrd 2839 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1‘𝐴) ∈
(𝑅1‘𝐴)) |
39 | 38 | rexlimdvaa 3213 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) →
(∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝑅1‘𝐴) ∈
(𝑅1‘𝐴))) |
40 | 24, 39 | mtod 197 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) → ¬
∃𝑥 ∈ On 𝐴 = suc 𝑥) |
41 | | ioran 980 |
. . . 4
⊢ (¬
(𝐴 = ∅ ∨
∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
42 | 15, 40, 41 | sylanbrc 582 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) → ¬
(𝐴 = ∅ ∨
∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
43 | | dflim3 7669 |
. . 3
⊢ (Lim
𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
44 | 9, 42, 43 | sylanbrc 582 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅1‘𝐴) ∈ WUni) → Lim 𝐴) |
45 | | r1limwun 10423 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → (𝑅1‘𝐴) ∈ WUni) |
46 | 44, 45 | impbida 797 |
1
⊢ (𝐴 ∈ 𝑉 → ((𝑅1‘𝐴) ∈ WUni ↔ Lim 𝐴)) |