MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1wunlim Structured version   Visualization version   GIF version

Theorem r1wunlim 10806
Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1wunlim (𝐴𝑉 → ((𝑅1𝐴) ∈ WUni ↔ Lim 𝐴))

Proof of Theorem r1wunlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (𝑅1𝐴) ∈ WUni)
21wun0 10787 . . . . . 6 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ∅ ∈ (𝑅1𝐴))
3 elfvdm 6957 . . . . . 6 (∅ ∈ (𝑅1𝐴) → 𝐴 ∈ dom 𝑅1)
42, 3syl 17 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ dom 𝑅1)
5 r1fnon 9836 . . . . . 6 𝑅1 Fn On
65fndmi 6683 . . . . 5 dom 𝑅1 = On
74, 6eleqtrdi 2854 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ On)
8 eloni 6405 . . . 4 (𝐴 ∈ On → Ord 𝐴)
97, 8syl 17 . . 3 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → Ord 𝐴)
10 n0i 4363 . . . . . 6 (∅ ∈ (𝑅1𝐴) → ¬ (𝑅1𝐴) = ∅)
112, 10syl 17 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝑅1𝐴) = ∅)
12 fveq2 6920 . . . . . 6 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
13 r10 9837 . . . . . 6 (𝑅1‘∅) = ∅
1412, 13eqtrdi 2796 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
1511, 14nsyl 140 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ 𝐴 = ∅)
16 onsuc 7847 . . . . . . . 8 (𝐴 ∈ On → suc 𝐴 ∈ On)
177, 16syl 17 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → suc 𝐴 ∈ On)
18 sucidg 6476 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
197, 18syl 17 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ suc 𝐴)
20 r1ord 9849 . . . . . . 7 (suc 𝐴 ∈ On → (𝐴 ∈ suc 𝐴 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
2117, 19, 20sylc 65 . . . . . 6 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
22 r1elwf 9865 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1𝐴) ∈ (𝑅1 “ On))
23 wfelirr 9894 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1 “ On) → ¬ (𝑅1𝐴) ∈ (𝑅1𝐴))
2421, 22, 233syl 18 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝑅1𝐴) ∈ (𝑅1𝐴))
25 simprr 772 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝐴 = suc 𝑥)
2625fveq2d 6924 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) = (𝑅1‘suc 𝑥))
27 r1suc 9839 . . . . . . . . 9 (𝑥 ∈ On → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2827ad2antrl 727 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2926, 28eqtrd 2780 . . . . . . 7 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) = 𝒫 (𝑅1𝑥))
30 simplr 768 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) ∈ WUni)
317adantr 480 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝐴 ∈ On)
32 sucidg 6476 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥 ∈ suc 𝑥)
3332ad2antrl 727 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝑥 ∈ suc 𝑥)
3433, 25eleqtrrd 2847 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝑥𝐴)
35 r1ord 9849 . . . . . . . . 9 (𝐴 ∈ On → (𝑥𝐴 → (𝑅1𝑥) ∈ (𝑅1𝐴)))
3631, 34, 35sylc 65 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝑥) ∈ (𝑅1𝐴))
3730, 36wunpw 10776 . . . . . . 7 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝒫 (𝑅1𝑥) ∈ (𝑅1𝐴))
3829, 37eqeltrd 2844 . . . . . 6 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) ∈ (𝑅1𝐴))
3938rexlimdvaa 3162 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝑅1𝐴) ∈ (𝑅1𝐴)))
4024, 39mtod 198 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
41 ioran 984 . . . 4 (¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
4215, 40, 41sylanbrc 582 . . 3 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
43 dflim3 7884 . . 3 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
449, 42, 43sylanbrc 582 . 2 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → Lim 𝐴)
45 r1limwun 10805 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)
4644, 45impbida 800 1 (𝐴𝑉 → ((𝑅1𝐴) ∈ WUni ↔ Lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wrex 3076  c0 4352  𝒫 cpw 4622   cuni 4931  dom cdm 5700  cima 5703  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397  cfv 6573  𝑅1cr1 9831  WUnicwun 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833  df-rank 9834  df-wun 10771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator