Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1wunlim Structured version   Visualization version   GIF version

Theorem r1wunlim 10158
 Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1wunlim (𝐴𝑉 → ((𝑅1𝐴) ∈ WUni ↔ Lim 𝐴))

Proof of Theorem r1wunlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (𝑅1𝐴) ∈ WUni)
21wun0 10139 . . . . . 6 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ∅ ∈ (𝑅1𝐴))
3 elfvdm 6694 . . . . . 6 (∅ ∈ (𝑅1𝐴) → 𝐴 ∈ dom 𝑅1)
42, 3syl 17 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ dom 𝑅1)
5 r1fnon 9194 . . . . . 6 𝑅1 Fn On
65fndmi 6445 . . . . 5 dom 𝑅1 = On
74, 6eleqtrdi 2926 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ On)
8 eloni 6189 . . . 4 (𝐴 ∈ On → Ord 𝐴)
97, 8syl 17 . . 3 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → Ord 𝐴)
10 n0i 4283 . . . . . 6 (∅ ∈ (𝑅1𝐴) → ¬ (𝑅1𝐴) = ∅)
112, 10syl 17 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝑅1𝐴) = ∅)
12 fveq2 6662 . . . . . 6 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
13 r10 9195 . . . . . 6 (𝑅1‘∅) = ∅
1412, 13syl6eq 2875 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
1511, 14nsyl 142 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ 𝐴 = ∅)
16 suceloni 7523 . . . . . . . 8 (𝐴 ∈ On → suc 𝐴 ∈ On)
177, 16syl 17 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → suc 𝐴 ∈ On)
18 sucidg 6257 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
197, 18syl 17 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ suc 𝐴)
20 r1ord 9207 . . . . . . 7 (suc 𝐴 ∈ On → (𝐴 ∈ suc 𝐴 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
2117, 19, 20sylc 65 . . . . . 6 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
22 r1elwf 9223 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1𝐴) ∈ (𝑅1 “ On))
23 wfelirr 9252 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1 “ On) → ¬ (𝑅1𝐴) ∈ (𝑅1𝐴))
2421, 22, 233syl 18 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝑅1𝐴) ∈ (𝑅1𝐴))
25 simprr 772 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝐴 = suc 𝑥)
2625fveq2d 6666 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) = (𝑅1‘suc 𝑥))
27 r1suc 9197 . . . . . . . . 9 (𝑥 ∈ On → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2827ad2antrl 727 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2926, 28eqtrd 2859 . . . . . . 7 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) = 𝒫 (𝑅1𝑥))
30 simplr 768 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) ∈ WUni)
317adantr 484 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝐴 ∈ On)
32 sucidg 6257 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥 ∈ suc 𝑥)
3332ad2antrl 727 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝑥 ∈ suc 𝑥)
3433, 25eleqtrrd 2919 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝑥𝐴)
35 r1ord 9207 . . . . . . . . 9 (𝐴 ∈ On → (𝑥𝐴 → (𝑅1𝑥) ∈ (𝑅1𝐴)))
3631, 34, 35sylc 65 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝑥) ∈ (𝑅1𝐴))
3730, 36wunpw 10128 . . . . . . 7 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝒫 (𝑅1𝑥) ∈ (𝑅1𝐴))
3829, 37eqeltrd 2916 . . . . . 6 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) ∈ (𝑅1𝐴))
3938rexlimdvaa 3278 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝑅1𝐴) ∈ (𝑅1𝐴)))
4024, 39mtod 201 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
41 ioran 981 . . . 4 (¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
4215, 40, 41sylanbrc 586 . . 3 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
43 dflim3 7557 . . 3 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
449, 42, 43sylanbrc 586 . 2 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → Lim 𝐴)
45 r1limwun 10157 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)
4644, 45impbida 800 1 (𝐴𝑉 → ((𝑅1𝐴) ∈ WUni ↔ Lim 𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115  ∃wrex 3134  ∅c0 4277  𝒫 cpw 4523  ∪ cuni 4825  dom cdm 5543   “ cima 5546  Ord word 6178  Oncon0 6179  Lim wlim 6180  suc csuc 6181  ‘cfv 6344  𝑅1cr1 9189  WUnicwun 10121 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-reg 9054  ax-inf2 9102 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-om 7576  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-r1 9191  df-rank 9192  df-wun 10123 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator