MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1wunlim Structured version   Visualization version   GIF version

Theorem r1wunlim 10775
Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1wunlim (𝐴𝑉 → ((𝑅1𝐴) ∈ WUni ↔ Lim 𝐴))

Proof of Theorem r1wunlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (𝑅1𝐴) ∈ WUni)
21wun0 10756 . . . . . 6 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ∅ ∈ (𝑅1𝐴))
3 elfvdm 6944 . . . . . 6 (∅ ∈ (𝑅1𝐴) → 𝐴 ∈ dom 𝑅1)
42, 3syl 17 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ dom 𝑅1)
5 r1fnon 9805 . . . . . 6 𝑅1 Fn On
65fndmi 6673 . . . . 5 dom 𝑅1 = On
74, 6eleqtrdi 2849 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ On)
8 eloni 6396 . . . 4 (𝐴 ∈ On → Ord 𝐴)
97, 8syl 17 . . 3 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → Ord 𝐴)
10 n0i 4346 . . . . . 6 (∅ ∈ (𝑅1𝐴) → ¬ (𝑅1𝐴) = ∅)
112, 10syl 17 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝑅1𝐴) = ∅)
12 fveq2 6907 . . . . . 6 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
13 r10 9806 . . . . . 6 (𝑅1‘∅) = ∅
1412, 13eqtrdi 2791 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
1511, 14nsyl 140 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ 𝐴 = ∅)
16 onsuc 7831 . . . . . . . 8 (𝐴 ∈ On → suc 𝐴 ∈ On)
177, 16syl 17 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → suc 𝐴 ∈ On)
18 sucidg 6467 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
197, 18syl 17 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ suc 𝐴)
20 r1ord 9818 . . . . . . 7 (suc 𝐴 ∈ On → (𝐴 ∈ suc 𝐴 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
2117, 19, 20sylc 65 . . . . . 6 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
22 r1elwf 9834 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1𝐴) ∈ (𝑅1 “ On))
23 wfelirr 9863 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1 “ On) → ¬ (𝑅1𝐴) ∈ (𝑅1𝐴))
2421, 22, 233syl 18 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝑅1𝐴) ∈ (𝑅1𝐴))
25 simprr 773 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝐴 = suc 𝑥)
2625fveq2d 6911 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) = (𝑅1‘suc 𝑥))
27 r1suc 9808 . . . . . . . . 9 (𝑥 ∈ On → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2827ad2antrl 728 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2926, 28eqtrd 2775 . . . . . . 7 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) = 𝒫 (𝑅1𝑥))
30 simplr 769 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) ∈ WUni)
317adantr 480 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝐴 ∈ On)
32 sucidg 6467 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥 ∈ suc 𝑥)
3332ad2antrl 728 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝑥 ∈ suc 𝑥)
3433, 25eleqtrrd 2842 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝑥𝐴)
35 r1ord 9818 . . . . . . . . 9 (𝐴 ∈ On → (𝑥𝐴 → (𝑅1𝑥) ∈ (𝑅1𝐴)))
3631, 34, 35sylc 65 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝑥) ∈ (𝑅1𝐴))
3730, 36wunpw 10745 . . . . . . 7 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝒫 (𝑅1𝑥) ∈ (𝑅1𝐴))
3829, 37eqeltrd 2839 . . . . . 6 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) ∈ (𝑅1𝐴))
3938rexlimdvaa 3154 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝑅1𝐴) ∈ (𝑅1𝐴)))
4024, 39mtod 198 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
41 ioran 985 . . . 4 (¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
4215, 40, 41sylanbrc 583 . . 3 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
43 dflim3 7868 . . 3 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
449, 42, 43sylanbrc 583 . 2 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → Lim 𝐴)
45 r1limwun 10774 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)
4644, 45impbida 801 1 (𝐴𝑉 → ((𝑅1𝐴) ∈ WUni ↔ Lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wrex 3068  c0 4339  𝒫 cpw 4605   cuni 4912  dom cdm 5689  cima 5692  Ord word 6385  Oncon0 6386  Lim wlim 6387  suc csuc 6388  cfv 6563  𝑅1cr1 9800  WUnicwun 10738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-r1 9802  df-rank 9803  df-wun 10740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator