MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1wunlim Structured version   Visualization version   GIF version

Theorem r1wunlim 10148
Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1wunlim (𝐴𝑉 → ((𝑅1𝐴) ∈ WUni ↔ Lim 𝐴))

Proof of Theorem r1wunlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (𝑅1𝐴) ∈ WUni)
21wun0 10129 . . . . . 6 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ∅ ∈ (𝑅1𝐴))
3 elfvdm 6677 . . . . . 6 (∅ ∈ (𝑅1𝐴) → 𝐴 ∈ dom 𝑅1)
42, 3syl 17 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ dom 𝑅1)
5 r1fnon 9180 . . . . . 6 𝑅1 Fn On
65fndmi 6426 . . . . 5 dom 𝑅1 = On
74, 6eleqtrdi 2900 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ On)
8 eloni 6169 . . . 4 (𝐴 ∈ On → Ord 𝐴)
97, 8syl 17 . . 3 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → Ord 𝐴)
10 n0i 4249 . . . . . 6 (∅ ∈ (𝑅1𝐴) → ¬ (𝑅1𝐴) = ∅)
112, 10syl 17 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝑅1𝐴) = ∅)
12 fveq2 6645 . . . . . 6 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
13 r10 9181 . . . . . 6 (𝑅1‘∅) = ∅
1412, 13eqtrdi 2849 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
1511, 14nsyl 142 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ 𝐴 = ∅)
16 suceloni 7508 . . . . . . . 8 (𝐴 ∈ On → suc 𝐴 ∈ On)
177, 16syl 17 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → suc 𝐴 ∈ On)
18 sucidg 6237 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
197, 18syl 17 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ suc 𝐴)
20 r1ord 9193 . . . . . . 7 (suc 𝐴 ∈ On → (𝐴 ∈ suc 𝐴 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
2117, 19, 20sylc 65 . . . . . 6 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
22 r1elwf 9209 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1𝐴) ∈ (𝑅1 “ On))
23 wfelirr 9238 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1 “ On) → ¬ (𝑅1𝐴) ∈ (𝑅1𝐴))
2421, 22, 233syl 18 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝑅1𝐴) ∈ (𝑅1𝐴))
25 simprr 772 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝐴 = suc 𝑥)
2625fveq2d 6649 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) = (𝑅1‘suc 𝑥))
27 r1suc 9183 . . . . . . . . 9 (𝑥 ∈ On → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2827ad2antrl 727 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2926, 28eqtrd 2833 . . . . . . 7 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) = 𝒫 (𝑅1𝑥))
30 simplr 768 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) ∈ WUni)
317adantr 484 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝐴 ∈ On)
32 sucidg 6237 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥 ∈ suc 𝑥)
3332ad2antrl 727 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝑥 ∈ suc 𝑥)
3433, 25eleqtrrd 2893 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝑥𝐴)
35 r1ord 9193 . . . . . . . . 9 (𝐴 ∈ On → (𝑥𝐴 → (𝑅1𝑥) ∈ (𝑅1𝐴)))
3631, 34, 35sylc 65 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝑥) ∈ (𝑅1𝐴))
3730, 36wunpw 10118 . . . . . . 7 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝒫 (𝑅1𝑥) ∈ (𝑅1𝐴))
3829, 37eqeltrd 2890 . . . . . 6 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) ∈ (𝑅1𝐴))
3938rexlimdvaa 3244 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝑅1𝐴) ∈ (𝑅1𝐴)))
4024, 39mtod 201 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
41 ioran 981 . . . 4 (¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
4215, 40, 41sylanbrc 586 . . 3 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
43 dflim3 7542 . . 3 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
449, 42, 43sylanbrc 586 . 2 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → Lim 𝐴)
45 r1limwun 10147 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)
4644, 45impbida 800 1 (𝐴𝑉 → ((𝑅1𝐴) ∈ WUni ↔ Lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wrex 3107  c0 4243  𝒫 cpw 4497   cuni 4800  dom cdm 5519  cima 5522  Ord word 6158  Oncon0 6159  Lim wlim 6160  suc csuc 6161  cfv 6324  𝑅1cr1 9175  WUnicwun 10111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-r1 9177  df-rank 9178  df-wun 10113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator