MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1wunlim Structured version   Visualization version   GIF version

Theorem r1wunlim 10666
Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1wunlim (𝐴𝑉 → ((𝑅1𝐴) ∈ WUni ↔ Lim 𝐴))

Proof of Theorem r1wunlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (𝑅1𝐴) ∈ WUni)
21wun0 10647 . . . . . 6 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ∅ ∈ (𝑅1𝐴))
3 elfvdm 6877 . . . . . 6 (∅ ∈ (𝑅1𝐴) → 𝐴 ∈ dom 𝑅1)
42, 3syl 17 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ dom 𝑅1)
5 r1fnon 9696 . . . . . 6 𝑅1 Fn On
65fndmi 6604 . . . . 5 dom 𝑅1 = On
74, 6eleqtrdi 2838 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ On)
8 eloni 6330 . . . 4 (𝐴 ∈ On → Ord 𝐴)
97, 8syl 17 . . 3 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → Ord 𝐴)
10 n0i 4299 . . . . . 6 (∅ ∈ (𝑅1𝐴) → ¬ (𝑅1𝐴) = ∅)
112, 10syl 17 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝑅1𝐴) = ∅)
12 fveq2 6840 . . . . . 6 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
13 r10 9697 . . . . . 6 (𝑅1‘∅) = ∅
1412, 13eqtrdi 2780 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
1511, 14nsyl 140 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ 𝐴 = ∅)
16 onsuc 7767 . . . . . . . 8 (𝐴 ∈ On → suc 𝐴 ∈ On)
177, 16syl 17 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → suc 𝐴 ∈ On)
18 sucidg 6403 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
197, 18syl 17 . . . . . . 7 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → 𝐴 ∈ suc 𝐴)
20 r1ord 9709 . . . . . . 7 (suc 𝐴 ∈ On → (𝐴 ∈ suc 𝐴 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
2117, 19, 20sylc 65 . . . . . 6 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
22 r1elwf 9725 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1𝐴) ∈ (𝑅1 “ On))
23 wfelirr 9754 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1 “ On) → ¬ (𝑅1𝐴) ∈ (𝑅1𝐴))
2421, 22, 233syl 18 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝑅1𝐴) ∈ (𝑅1𝐴))
25 simprr 772 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝐴 = suc 𝑥)
2625fveq2d 6844 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) = (𝑅1‘suc 𝑥))
27 r1suc 9699 . . . . . . . . 9 (𝑥 ∈ On → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2827ad2antrl 728 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2926, 28eqtrd 2764 . . . . . . 7 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) = 𝒫 (𝑅1𝑥))
30 simplr 768 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) ∈ WUni)
317adantr 480 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝐴 ∈ On)
32 sucidg 6403 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥 ∈ suc 𝑥)
3332ad2antrl 728 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝑥 ∈ suc 𝑥)
3433, 25eleqtrrd 2831 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝑥𝐴)
35 r1ord 9709 . . . . . . . . 9 (𝐴 ∈ On → (𝑥𝐴 → (𝑅1𝑥) ∈ (𝑅1𝐴)))
3631, 34, 35sylc 65 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝑥) ∈ (𝑅1𝐴))
3730, 36wunpw 10636 . . . . . . 7 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → 𝒫 (𝑅1𝑥) ∈ (𝑅1𝐴))
3829, 37eqeltrd 2828 . . . . . 6 (((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) ∧ (𝑥 ∈ On ∧ 𝐴 = suc 𝑥)) → (𝑅1𝐴) ∈ (𝑅1𝐴))
3938rexlimdvaa 3135 . . . . 5 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝑅1𝐴) ∈ (𝑅1𝐴)))
4024, 39mtod 198 . . . 4 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
41 ioran 985 . . . 4 (¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
4215, 40, 41sylanbrc 583 . . 3 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
43 dflim3 7803 . . 3 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
449, 42, 43sylanbrc 583 . 2 ((𝐴𝑉 ∧ (𝑅1𝐴) ∈ WUni) → Lim 𝐴)
45 r1limwun 10665 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)
4644, 45impbida 800 1 (𝐴𝑉 → ((𝑅1𝐴) ∈ WUni ↔ Lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053  c0 4292  𝒫 cpw 4559   cuni 4867  dom cdm 5631  cima 5634  Ord word 6319  Oncon0 6320  Lim wlim 6321  suc csuc 6322  cfv 6499  𝑅1cr1 9691  WUnicwun 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-r1 9693  df-rank 9694  df-wun 10631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator