MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetasuplem3 Structured version   Visualization version   GIF version

Theorem noetasuplem3 27645
Description: Lemma for noeta 27653. 𝑍 is an upper bound for 𝐴. Part of Theorem 5.1 of [Lipparini] p. 7-8. (Contributed by Scott Fenton, 4-Dec-2021.)
Hypotheses
Ref Expression
noetasuplem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetasuplem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetasuplem3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋 <s 𝑍)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑋,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑋(𝑔)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetasuplem3
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝐴 No )
2 simpl2 1193 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝐴 ∈ V)
3 simpr 484 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋𝐴)
4 noetasuplem.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
54nosupbnd1 27624 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝑋𝐴) → (𝑋 ↾ dom 𝑆) <s 𝑆)
61, 2, 3, 5syl3anc 1373 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑋 ↾ dom 𝑆) <s 𝑆)
7 noetasuplem.2 . . . . . 6 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
87reseq1i 5926 . . . . 5 (𝑍 ↾ dom 𝑆) = ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆)
9 resundir 5945 . . . . . 6 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆))
10 df-res 5631 . . . . . . . 8 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V))
11 disjdifr 4424 . . . . . . . . 9 ((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅
12 xpdisj1 6110 . . . . . . . . 9 (((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅ → (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) = ∅)
1311, 12ax-mp 5 . . . . . . . 8 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) = ∅
1410, 13eqtri 2752 . . . . . . 7 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅
1514uneq2i 4116 . . . . . 6 ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑆) ∪ ∅)
16 un0 4345 . . . . . 6 ((𝑆 ↾ dom 𝑆) ∪ ∅) = (𝑆 ↾ dom 𝑆)
179, 15, 163eqtri 2756 . . . . 5 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆) = (𝑆 ↾ dom 𝑆)
188, 17eqtri 2752 . . . 4 (𝑍 ↾ dom 𝑆) = (𝑆 ↾ dom 𝑆)
194nosupno 27613 . . . . . 6 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
201, 2, 19syl2anc 584 . . . . 5 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑆 No )
21 nofun 27559 . . . . 5 (𝑆 No → Fun 𝑆)
22 funrel 6499 . . . . 5 (Fun 𝑆 → Rel 𝑆)
23 resdm 5977 . . . . 5 (Rel 𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆)
2420, 21, 22, 234syl 19 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑆 ↾ dom 𝑆) = 𝑆)
2518, 24eqtrid 2776 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑍 ↾ dom 𝑆) = 𝑆)
266, 25breqtrrd 5120 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆))
27 simp1 1136 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 No )
2827sselda 3935 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋 No )
294, 7noetasuplem1 27643 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
3029adantr 480 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑍 No )
31 nodmon 27560 . . . 4 (𝑆 No → dom 𝑆 ∈ On)
3220, 31syl 17 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → dom 𝑆 ∈ On)
33 sltres 27572 . . 3 ((𝑋 No 𝑍 No ∧ dom 𝑆 ∈ On) → ((𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑋 <s 𝑍))
3428, 30, 32, 33syl3anc 1373 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → ((𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑋 <s 𝑍))
3526, 34mpd 15 1 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋 <s 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3436  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284  ifcif 4476  {csn 4577  cop 4583   cuni 4858   class class class wbr 5092  cmpt 5173   × cxp 5617  dom cdm 5619  cres 5621  cima 5622  Rel wrel 5624  Oncon0 6307  suc csuc 6309  cio 6436  Fun wfun 6476  cfv 6482  crio 7305  1oc1o 8381  2oc2o 8382   No csur 27549   <s cslt 27550   bday cbday 27551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-riota 7306  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554
This theorem is referenced by:  noetalem1  27651
  Copyright terms: Public domain W3C validator