Proof of Theorem noetasuplem3
Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . . 4
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → 𝐴 ⊆ No
) |
2 | | simpl2 1190 |
. . . 4
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → 𝐴 ∈ V) |
3 | | simpr 484 |
. . . 4
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) |
4 | | noetasuplem.1 |
. . . . 5
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
5 | 4 | nosupbnd1 33844 |
. . . 4
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑋 ∈ 𝐴) → (𝑋 ↾ dom 𝑆) <s 𝑆) |
6 | 1, 2, 3, 5 | syl3anc 1369 |
. . 3
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → (𝑋 ↾ dom 𝑆) <s 𝑆) |
7 | | noetasuplem.2 |
. . . . . 6
⊢ 𝑍 = (𝑆 ∪ ((suc ∪
( bday “ 𝐵) ∖ dom 𝑆) × {1o})) |
8 | 7 | reseq1i 5876 |
. . . . 5
⊢ (𝑍 ↾ dom 𝑆) = ((𝑆 ∪ ((suc ∪
( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom
𝑆) |
9 | | resundir 5895 |
. . . . . 6
⊢ ((𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom
𝑆) = ((𝑆 ↾ dom 𝑆) ∪ (((suc ∪
( bday “ 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) |
10 | | df-res 5592 |
. . . . . . . 8
⊢ (((suc
∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = (((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) |
11 | | disjdifr 4403 |
. . . . . . . . 9
⊢ ((suc
∪ ( bday “ 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅ |
12 | | xpdisj1 6053 |
. . . . . . . . 9
⊢ (((suc
∪ ( bday “ 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅ → (((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) =
∅) |
13 | 11, 12 | ax-mp 5 |
. . . . . . . 8
⊢ (((suc
∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) =
∅ |
14 | 10, 13 | eqtri 2766 |
. . . . . . 7
⊢ (((suc
∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅ |
15 | 14 | uneq2i 4090 |
. . . . . 6
⊢ ((𝑆 ↾ dom 𝑆) ∪ (((suc ∪
( bday “ 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑆) ∪ ∅) |
16 | | un0 4321 |
. . . . . 6
⊢ ((𝑆 ↾ dom 𝑆) ∪ ∅) = (𝑆 ↾ dom 𝑆) |
17 | 9, 15, 16 | 3eqtri 2770 |
. . . . 5
⊢ ((𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom
𝑆) = (𝑆 ↾ dom 𝑆) |
18 | 8, 17 | eqtri 2766 |
. . . 4
⊢ (𝑍 ↾ dom 𝑆) = (𝑆 ↾ dom 𝑆) |
19 | 4 | nosupno 33833 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
20 | 1, 2, 19 | syl2anc 583 |
. . . . . 6
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → 𝑆 ∈ No
) |
21 | | nofun 33779 |
. . . . . 6
⊢ (𝑆 ∈
No → Fun 𝑆) |
22 | 20, 21 | syl 17 |
. . . . 5
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → Fun 𝑆) |
23 | | funrel 6435 |
. . . . 5
⊢ (Fun
𝑆 → Rel 𝑆) |
24 | | resdm 5925 |
. . . . 5
⊢ (Rel
𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆) |
25 | 22, 23, 24 | 3syl 18 |
. . . 4
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → (𝑆 ↾ dom 𝑆) = 𝑆) |
26 | 18, 25 | syl5eq 2791 |
. . 3
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → (𝑍 ↾ dom 𝑆) = 𝑆) |
27 | 6, 26 | breqtrrd 5098 |
. 2
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → (𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆)) |
28 | | simp1 1134 |
. . . 4
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) →
𝐴 ⊆ No ) |
29 | 28 | sselda 3917 |
. . 3
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → 𝑋 ∈ No
) |
30 | 4, 7 | noetasuplem1 33863 |
. . . 4
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) →
𝑍 ∈ No ) |
31 | 30 | adantr 480 |
. . 3
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → 𝑍 ∈ No
) |
32 | | nodmon 33780 |
. . . 4
⊢ (𝑆 ∈
No → dom 𝑆
∈ On) |
33 | 20, 32 | syl 17 |
. . 3
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → dom 𝑆 ∈ On) |
34 | | sltres 33792 |
. . 3
⊢ ((𝑋 ∈
No ∧ 𝑍 ∈
No ∧ dom 𝑆 ∈ On) → ((𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑋 <s 𝑍)) |
35 | 29, 31, 33, 34 | syl3anc 1369 |
. 2
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → ((𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑋 <s 𝑍)) |
36 | 27, 35 | mpd 15 |
1
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) ∧
𝑋 ∈ 𝐴) → 𝑋 <s 𝑍) |