MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetasuplem3 Structured version   Visualization version   GIF version

Theorem noetasuplem3 27654
Description: Lemma for noeta 27662. 𝑍 is an upper bound for 𝐴. Part of Theorem 5.1 of [Lipparini] p. 7-8. (Contributed by Scott Fenton, 4-Dec-2021.)
Hypotheses
Ref Expression
noetasuplem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetasuplem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetasuplem3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋 <s 𝑍)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑋,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑋(𝑔)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetasuplem3
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝐴 No )
2 simpl2 1193 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝐴 ∈ V)
3 simpr 484 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋𝐴)
4 noetasuplem.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
54nosupbnd1 27633 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝑋𝐴) → (𝑋 ↾ dom 𝑆) <s 𝑆)
61, 2, 3, 5syl3anc 1373 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑋 ↾ dom 𝑆) <s 𝑆)
7 noetasuplem.2 . . . . . 6 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
87reseq1i 5949 . . . . 5 (𝑍 ↾ dom 𝑆) = ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆)
9 resundir 5968 . . . . . 6 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆))
10 df-res 5653 . . . . . . . 8 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V))
11 disjdifr 4439 . . . . . . . . 9 ((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅
12 xpdisj1 6137 . . . . . . . . 9 (((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅ → (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) = ∅)
1311, 12ax-mp 5 . . . . . . . 8 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) = ∅
1410, 13eqtri 2753 . . . . . . 7 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅
1514uneq2i 4131 . . . . . 6 ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑆) ∪ ∅)
16 un0 4360 . . . . . 6 ((𝑆 ↾ dom 𝑆) ∪ ∅) = (𝑆 ↾ dom 𝑆)
179, 15, 163eqtri 2757 . . . . 5 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆) = (𝑆 ↾ dom 𝑆)
188, 17eqtri 2753 . . . 4 (𝑍 ↾ dom 𝑆) = (𝑆 ↾ dom 𝑆)
194nosupno 27622 . . . . . 6 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
201, 2, 19syl2anc 584 . . . . 5 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑆 No )
21 nofun 27568 . . . . 5 (𝑆 No → Fun 𝑆)
22 funrel 6536 . . . . 5 (Fun 𝑆 → Rel 𝑆)
23 resdm 6000 . . . . 5 (Rel 𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆)
2420, 21, 22, 234syl 19 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑆 ↾ dom 𝑆) = 𝑆)
2518, 24eqtrid 2777 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑍 ↾ dom 𝑆) = 𝑆)
266, 25breqtrrd 5138 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆))
27 simp1 1136 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 No )
2827sselda 3949 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋 No )
294, 7noetasuplem1 27652 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
3029adantr 480 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑍 No )
31 nodmon 27569 . . . 4 (𝑆 No → dom 𝑆 ∈ On)
3220, 31syl 17 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → dom 𝑆 ∈ On)
33 sltres 27581 . . 3 ((𝑋 No 𝑍 No ∧ dom 𝑆 ∈ On) → ((𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑋 <s 𝑍))
3428, 30, 32, 33syl3anc 1373 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → ((𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑋 <s 𝑍))
3526, 34mpd 15 1 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋 <s 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  ifcif 4491  {csn 4592  cop 4598   cuni 4874   class class class wbr 5110  cmpt 5191   × cxp 5639  dom cdm 5641  cres 5643  cima 5644  Rel wrel 5646  Oncon0 6335  suc csuc 6337  cio 6465  Fun wfun 6508  cfv 6514  crio 7346  1oc1o 8430  2oc2o 8431   No csur 27558   <s cslt 27559   bday cbday 27560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-riota 7347  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563
This theorem is referenced by:  noetalem1  27660
  Copyright terms: Public domain W3C validator