MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexcnv Structured version   Visualization version   GIF version

Theorem xpexcnv 7741
Description: A condition where the converse of xpex 7581 holds as well. Corollary 6.9(2) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.)
Assertion
Ref Expression
xpexcnv ((𝐵 ≠ ∅ ∧ (𝐴 × 𝐵) ∈ V) → 𝐴 ∈ V)

Proof of Theorem xpexcnv
StepHypRef Expression
1 dmexg 7724 . . 3 ((𝐴 × 𝐵) ∈ V → dom (𝐴 × 𝐵) ∈ V)
2 dmxp 5827 . . . 4 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
32eleq1d 2823 . . 3 (𝐵 ≠ ∅ → (dom (𝐴 × 𝐵) ∈ V ↔ 𝐴 ∈ V))
41, 3syl5ib 243 . 2 (𝐵 ≠ ∅ → ((𝐴 × 𝐵) ∈ V → 𝐴 ∈ V))
54imp 406 1 ((𝐵 ≠ ∅ ∧ (𝐴 × 𝐵) ∈ V) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2942  Vcvv 3422  c0 4253   × cxp 5578  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591
This theorem is referenced by:  fczsupp0  7980
  Copyright terms: Public domain W3C validator