MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexcnv Structured version   Visualization version   GIF version

Theorem xpexcnv 7611
Description: A condition where the converse of xpex 7461 holds as well. Corollary 6.9(2) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.)
Assertion
Ref Expression
xpexcnv ((𝐵 ≠ ∅ ∧ (𝐴 × 𝐵) ∈ V) → 𝐴 ∈ V)

Proof of Theorem xpexcnv
StepHypRef Expression
1 dmexg 7599 . . 3 ((𝐴 × 𝐵) ∈ V → dom (𝐴 × 𝐵) ∈ V)
2 dmxp 5776 . . . 4 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
32eleq1d 2898 . . 3 (𝐵 ≠ ∅ → (dom (𝐴 × 𝐵) ∈ V ↔ 𝐴 ∈ V))
41, 3syl5ib 247 . 2 (𝐵 ≠ ∅ → ((𝐴 × 𝐵) ∈ V → 𝐴 ∈ V))
54imp 410 1 ((𝐵 ≠ ∅ ∧ (𝐴 × 𝐵) ∈ V) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2114  wne 3011  Vcvv 3469  c0 4265   × cxp 5530  dom cdm 5532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rab 3139  df-v 3471  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-xp 5538  df-cnv 5540  df-dm 5542  df-rn 5543
This theorem is referenced by:  fczsupp0  7846
  Copyright terms: Public domain W3C validator