| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpexcnv | Structured version Visualization version GIF version | ||
| Description: A condition where the converse of xpex 7752 holds as well. Corollary 6.9(2) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.) |
| Ref | Expression |
|---|---|
| xpexcnv | ⊢ ((𝐵 ≠ ∅ ∧ (𝐴 × 𝐵) ∈ V) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg 7902 | . . 3 ⊢ ((𝐴 × 𝐵) ∈ V → dom (𝐴 × 𝐵) ∈ V) | |
| 2 | dmxp 5913 | . . . 4 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
| 3 | 2 | eleq1d 2820 | . . 3 ⊢ (𝐵 ≠ ∅ → (dom (𝐴 × 𝐵) ∈ V ↔ 𝐴 ∈ V)) |
| 4 | 1, 3 | imbitrid 244 | . 2 ⊢ (𝐵 ≠ ∅ → ((𝐴 × 𝐵) ∈ V → 𝐴 ∈ V)) |
| 5 | 4 | imp 406 | 1 ⊢ ((𝐵 ≠ ∅ ∧ (𝐴 × 𝐵) ∈ V) → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ∅c0 4313 × cxp 5657 dom cdm 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: fczsupp0 8197 |
| Copyright terms: Public domain | W3C validator |