![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpexcnv | Structured version Visualization version GIF version |
Description: A condition where the converse of xpex 7240 holds as well. Corollary 6.9(2) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.) |
Ref | Expression |
---|---|
xpexcnv | ⊢ ((𝐵 ≠ ∅ ∧ (𝐴 × 𝐵) ∈ V) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7375 | . . 3 ⊢ ((𝐴 × 𝐵) ∈ V → dom (𝐴 × 𝐵) ∈ V) | |
2 | dmxp 5589 | . . . 4 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
3 | 2 | eleq1d 2843 | . . 3 ⊢ (𝐵 ≠ ∅ → (dom (𝐴 × 𝐵) ∈ V ↔ 𝐴 ∈ V)) |
4 | 1, 3 | syl5ib 236 | . 2 ⊢ (𝐵 ≠ ∅ → ((𝐴 × 𝐵) ∈ V → 𝐴 ∈ V)) |
5 | 4 | imp 397 | 1 ⊢ ((𝐵 ≠ ∅ ∧ (𝐴 × 𝐵) ∈ V) → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2106 ≠ wne 2968 Vcvv 3397 ∅c0 4140 × cxp 5353 dom cdm 5355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-xp 5361 df-cnv 5363 df-dm 5365 df-rn 5366 |
This theorem is referenced by: fczsupp0 7606 |
Copyright terms: Public domain | W3C validator |