Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpexr2 | Structured version Visualization version GIF version |
Description: If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
xpexr2 | ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpnz 6051 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
2 | dmxp 5827 | . . . . . 6 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
3 | 2 | adantl 481 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → dom (𝐴 × 𝐵) = 𝐴) |
4 | dmexg 7724 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → dom (𝐴 × 𝐵) ∈ V) |
6 | 3, 5 | eqeltrrd 2840 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → 𝐴 ∈ V) |
7 | rnxp 6062 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | |
8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → ran (𝐴 × 𝐵) = 𝐵) |
9 | rnexg 7725 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V) | |
10 | 9 | adantr 480 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → ran (𝐴 × 𝐵) ∈ V) |
11 | 8, 10 | eqeltrrd 2840 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ V) |
12 | 6, 11 | anim12dan 618 | . . 3 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | 12 | ancom2s 646 | . 2 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 1, 13 | sylan2br 594 | 1 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 × cxp 5578 dom cdm 5580 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: xpfir 8970 bj-xpnzex 35076 |
Copyright terms: Public domain | W3C validator |