MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexr2 Structured version   Visualization version   GIF version

Theorem xpexr2 7942
Description: If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
xpexr2 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem xpexr2
StepHypRef Expression
1 xpnz 6181 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
2 dmxp 5942 . . . . . 6 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
32adantl 481 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → dom (𝐴 × 𝐵) = 𝐴)
4 dmexg 7924 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V)
54adantr 480 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → dom (𝐴 × 𝐵) ∈ V)
63, 5eqeltrrd 2840 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → 𝐴 ∈ V)
7 rnxp 6192 . . . . . 6 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
87adantl 481 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → ran (𝐴 × 𝐵) = 𝐵)
9 rnexg 7925 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V)
109adantr 480 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → ran (𝐴 × 𝐵) ∈ V)
118, 10eqeltrrd 2840 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → 𝐵 ∈ V)
126, 11anim12dan 619 . . 3 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1312ancom2s 650 . 2 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
141, 13sylan2br 595 1 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  c0 4339   × cxp 5687  dom cdm 5689  ran crn 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700
This theorem is referenced by:  xpfir  9298  bj-xpnzex  36942
  Copyright terms: Public domain W3C validator