MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexr2 Structured version   Visualization version   GIF version

Theorem xpexr2 7740
Description: If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
xpexr2 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem xpexr2
StepHypRef Expression
1 xpnz 6051 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
2 dmxp 5827 . . . . . 6 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
32adantl 481 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → dom (𝐴 × 𝐵) = 𝐴)
4 dmexg 7724 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V)
54adantr 480 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → dom (𝐴 × 𝐵) ∈ V)
63, 5eqeltrrd 2840 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → 𝐴 ∈ V)
7 rnxp 6062 . . . . . 6 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
87adantl 481 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → ran (𝐴 × 𝐵) = 𝐵)
9 rnexg 7725 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V)
109adantr 480 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → ran (𝐴 × 𝐵) ∈ V)
118, 10eqeltrrd 2840 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → 𝐵 ∈ V)
126, 11anim12dan 618 . . 3 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1312ancom2s 646 . 2 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
141, 13sylan2br 594 1 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  c0 4253   × cxp 5578  dom cdm 5580  ran crn 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591
This theorem is referenced by:  xpfir  8970  bj-xpnzex  35076
  Copyright terms: Public domain W3C validator