MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexr2 Structured version   Visualization version   GIF version

Theorem xpexr2 7905
Description: If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
xpexr2 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem xpexr2
StepHypRef Expression
1 xpnz 6155 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
2 dmxp 5926 . . . . . 6 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
32adantl 483 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → dom (𝐴 × 𝐵) = 𝐴)
4 dmexg 7889 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V)
54adantr 482 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → dom (𝐴 × 𝐵) ∈ V)
63, 5eqeltrrd 2835 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → 𝐴 ∈ V)
7 rnxp 6166 . . . . . 6 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
87adantl 483 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → ran (𝐴 × 𝐵) = 𝐵)
9 rnexg 7890 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V)
109adantr 482 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → ran (𝐴 × 𝐵) ∈ V)
118, 10eqeltrrd 2835 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → 𝐵 ∈ V)
126, 11anim12dan 620 . . 3 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1312ancom2s 649 . 2 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
141, 13sylan2br 596 1 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  c0 4321   × cxp 5673  dom cdm 5675  ran crn 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686
This theorem is referenced by:  xpfir  9262  bj-xpnzex  35778
  Copyright terms: Public domain W3C validator