![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpexr2 | Structured version Visualization version GIF version |
Description: If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
xpexr2 | ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpnz 6158 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
2 | dmxp 5928 | . . . . . 6 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
3 | 2 | adantl 482 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → dom (𝐴 × 𝐵) = 𝐴) |
4 | dmexg 7893 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → dom (𝐴 × 𝐵) ∈ V) |
6 | 3, 5 | eqeltrrd 2834 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → 𝐴 ∈ V) |
7 | rnxp 6169 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | |
8 | 7 | adantl 482 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → ran (𝐴 × 𝐵) = 𝐵) |
9 | rnexg 7894 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V) | |
10 | 9 | adantr 481 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → ran (𝐴 × 𝐵) ∈ V) |
11 | 8, 10 | eqeltrrd 2834 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ V) |
12 | 6, 11 | anim12dan 619 | . . 3 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | 12 | ancom2s 648 | . 2 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 1, 13 | sylan2br 595 | 1 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∅c0 4322 × cxp 5674 dom cdm 5676 ran crn 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: xpfir 9265 bj-xpnzex 35835 |
Copyright terms: Public domain | W3C validator |