![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpexr2 | Structured version Visualization version GIF version |
Description: If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
xpexr2 | ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpnz 5795 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
2 | dmxp 5577 | . . . . . 6 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
3 | 2 | adantl 475 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → dom (𝐴 × 𝐵) = 𝐴) |
4 | dmexg 7359 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V) | |
5 | 4 | adantr 474 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → dom (𝐴 × 𝐵) ∈ V) |
6 | 3, 5 | eqeltrrd 2908 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → 𝐴 ∈ V) |
7 | rnxp 5806 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | |
8 | 7 | adantl 475 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → ran (𝐴 × 𝐵) = 𝐵) |
9 | rnexg 7360 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V) | |
10 | 9 | adantr 474 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → ran (𝐴 × 𝐵) ∈ V) |
11 | 8, 10 | eqeltrrd 2908 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ V) |
12 | 6, 11 | anim12dan 614 | . . 3 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | 12 | ancom2s 642 | . 2 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 1, 13 | sylan2br 590 | 1 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 3000 Vcvv 3415 ∅c0 4145 × cxp 5341 dom cdm 5343 ran crn 5344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-xp 5349 df-rel 5350 df-cnv 5351 df-dm 5353 df-rn 5354 |
This theorem is referenced by: xpfir 8452 bj-xpnzex 33469 |
Copyright terms: Public domain | W3C validator |