![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fczsupp0 | Structured version Visualization version GIF version |
Description: The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019.) |
Ref | Expression |
---|---|
fczsupp0 | ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2741 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) = (𝐵 × {𝑍})) | |
2 | fnconstg 6809 | . . . . 5 ⊢ (𝑍 ∈ V → (𝐵 × {𝑍}) Fn 𝐵) | |
3 | 2 | adantl 481 | . . . 4 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) Fn 𝐵) |
4 | snnzg 4799 | . . . . 5 ⊢ (𝑍 ∈ V → {𝑍} ≠ ∅) | |
5 | simpl 482 | . . . . 5 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) ∈ V) | |
6 | xpexcnv 7960 | . . . . 5 ⊢ (({𝑍} ≠ ∅ ∧ (𝐵 × {𝑍}) ∈ V) → 𝐵 ∈ V) | |
7 | 4, 5, 6 | syl2an2 685 | . . . 4 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝐵 ∈ V) |
8 | simpr 484 | . . . 4 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V) | |
9 | fnsuppeq0 8233 | . . . 4 ⊢ (((𝐵 × {𝑍}) Fn 𝐵 ∧ 𝐵 ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍}))) | |
10 | 3, 7, 8, 9 | syl3anc 1371 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍}))) |
11 | 1, 10 | mpbird 257 | . 2 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅) |
12 | supp0prc 8204 | . 2 ⊢ (¬ ((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅) | |
13 | 11, 12 | pm2.61i 182 | 1 ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 {csn 4648 × cxp 5698 Fn wfn 6568 (class class class)co 7448 supp csupp 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-supp 8202 |
This theorem is referenced by: fczfsuppd 9455 cantnf 9762 mhp0cl 22173 cantnfresb 43286 |
Copyright terms: Public domain | W3C validator |