![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fczsupp0 | Structured version Visualization version GIF version |
Description: The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019.) |
Ref | Expression |
---|---|
fczsupp0 | ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2732 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) = (𝐵 × {𝑍})) | |
2 | fnconstg 6779 | . . . . 5 ⊢ (𝑍 ∈ V → (𝐵 × {𝑍}) Fn 𝐵) | |
3 | 2 | adantl 481 | . . . 4 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) Fn 𝐵) |
4 | snnzg 4778 | . . . . 5 ⊢ (𝑍 ∈ V → {𝑍} ≠ ∅) | |
5 | simpl 482 | . . . . 5 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) ∈ V) | |
6 | xpexcnv 7914 | . . . . 5 ⊢ (({𝑍} ≠ ∅ ∧ (𝐵 × {𝑍}) ∈ V) → 𝐵 ∈ V) | |
7 | 4, 5, 6 | syl2an2 683 | . . . 4 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝐵 ∈ V) |
8 | simpr 484 | . . . 4 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V) | |
9 | fnsuppeq0 8180 | . . . 4 ⊢ (((𝐵 × {𝑍}) Fn 𝐵 ∧ 𝐵 ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍}))) | |
10 | 3, 7, 8, 9 | syl3anc 1370 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍}))) |
11 | 1, 10 | mpbird 257 | . 2 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅) |
12 | supp0prc 8152 | . 2 ⊢ (¬ ((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅) | |
13 | 11, 12 | pm2.61i 182 | 1 ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 ∅c0 4322 {csn 4628 × cxp 5674 Fn wfn 6538 (class class class)co 7412 supp csupp 8149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-supp 8150 |
This theorem is referenced by: fczfsuppd 9384 cantnf 9691 mhp0cl 21909 cantnfresb 42377 |
Copyright terms: Public domain | W3C validator |