| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fczsupp0 | Structured version Visualization version GIF version | ||
| Description: The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019.) |
| Ref | Expression |
|---|---|
| fczsupp0 | ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) = (𝐵 × {𝑍})) | |
| 2 | fnconstg 6706 | . . . . 5 ⊢ (𝑍 ∈ V → (𝐵 × {𝑍}) Fn 𝐵) | |
| 3 | 2 | adantl 481 | . . . 4 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) Fn 𝐵) |
| 4 | snnzg 4722 | . . . . 5 ⊢ (𝑍 ∈ V → {𝑍} ≠ ∅) | |
| 5 | simpl 482 | . . . . 5 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) ∈ V) | |
| 6 | xpexcnv 7845 | . . . . 5 ⊢ (({𝑍} ≠ ∅ ∧ (𝐵 × {𝑍}) ∈ V) → 𝐵 ∈ V) | |
| 7 | 4, 5, 6 | syl2an2 686 | . . . 4 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝐵 ∈ V) |
| 8 | simpr 484 | . . . 4 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V) | |
| 9 | fnsuppeq0 8117 | . . . 4 ⊢ (((𝐵 × {𝑍}) Fn 𝐵 ∧ 𝐵 ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍}))) | |
| 10 | 3, 7, 8, 9 | syl3anc 1373 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍}))) |
| 11 | 1, 10 | mpbird 257 | . 2 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅) |
| 12 | supp0prc 8088 | . 2 ⊢ (¬ ((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅) | |
| 13 | 11, 12 | pm2.61i 182 | 1 ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4278 {csn 4571 × cxp 5609 Fn wfn 6471 (class class class)co 7341 supp csupp 8085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-supp 8086 |
| This theorem is referenced by: fczfsuppd 9265 cantnf 9578 mhp0cl 22056 elrgspnlem4 33204 cantnfresb 43357 |
| Copyright terms: Public domain | W3C validator |