MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fczsupp0 Structured version   Visualization version   GIF version

Theorem fczsupp0 8181
Description: The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019.)
Assertion
Ref Expression
fczsupp0 ((𝐵 × {𝑍}) supp 𝑍) = ∅

Proof of Theorem fczsupp0
StepHypRef Expression
1 eqidd 2732 . . 3 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) = (𝐵 × {𝑍}))
2 fnconstg 6779 . . . . 5 (𝑍 ∈ V → (𝐵 × {𝑍}) Fn 𝐵)
32adantl 481 . . . 4 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) Fn 𝐵)
4 snnzg 4778 . . . . 5 (𝑍 ∈ V → {𝑍} ≠ ∅)
5 simpl 482 . . . . 5 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) ∈ V)
6 xpexcnv 7914 . . . . 5 (({𝑍} ≠ ∅ ∧ (𝐵 × {𝑍}) ∈ V) → 𝐵 ∈ V)
74, 5, 6syl2an2 683 . . . 4 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝐵 ∈ V)
8 simpr 484 . . . 4 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
9 fnsuppeq0 8180 . . . 4 (((𝐵 × {𝑍}) Fn 𝐵𝐵 ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍})))
103, 7, 8, 9syl3anc 1370 . . 3 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍})))
111, 10mpbird 257 . 2 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅)
12 supp0prc 8152 . 2 (¬ ((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅)
1311, 12pm2.61i 182 1 ((𝐵 × {𝑍}) supp 𝑍) = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  wcel 2105  wne 2939  Vcvv 3473  c0 4322  {csn 4628   × cxp 5674   Fn wfn 6538  (class class class)co 7412   supp csupp 8149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-supp 8150
This theorem is referenced by:  fczfsuppd  9384  cantnf  9691  mhp0cl  21909  cantnfresb  42377
  Copyright terms: Public domain W3C validator