MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fczsupp0 Structured version   Visualization version   GIF version

Theorem fczsupp0 7862
Description: The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019.)
Assertion
Ref Expression
fczsupp0 ((𝐵 × {𝑍}) supp 𝑍) = ∅

Proof of Theorem fczsupp0
StepHypRef Expression
1 eqidd 2825 . . 3 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) = (𝐵 × {𝑍}))
2 fnconstg 6570 . . . . 5 (𝑍 ∈ V → (𝐵 × {𝑍}) Fn 𝐵)
32adantl 484 . . . 4 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) Fn 𝐵)
4 snnzg 4713 . . . . 5 (𝑍 ∈ V → {𝑍} ≠ ∅)
5 simpl 485 . . . . 5 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) ∈ V)
6 xpexcnv 7628 . . . . 5 (({𝑍} ≠ ∅ ∧ (𝐵 × {𝑍}) ∈ V) → 𝐵 ∈ V)
74, 5, 6syl2an2 684 . . . 4 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝐵 ∈ V)
8 simpr 487 . . . 4 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
9 fnsuppeq0 7861 . . . 4 (((𝐵 × {𝑍}) Fn 𝐵𝐵 ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍})))
103, 7, 8, 9syl3anc 1367 . . 3 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍})))
111, 10mpbird 259 . 2 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅)
12 supp0prc 7836 . 2 (¬ ((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅)
1311, 12pm2.61i 184 1 ((𝐵 × {𝑍}) supp 𝑍) = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  Vcvv 3497  c0 4294  {csn 4570   × cxp 5556   Fn wfn 6353  (class class class)co 7159   supp csupp 7833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-supp 7834
This theorem is referenced by:  fczfsuppd  8854  cantnf  9159  mhp0cl  20340
  Copyright terms: Public domain W3C validator