MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fczsupp0 Structured version   Visualization version   GIF version

Theorem fczsupp0 8218
Description: The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019.)
Assertion
Ref Expression
fczsupp0 ((𝐵 × {𝑍}) supp 𝑍) = ∅

Proof of Theorem fczsupp0
StepHypRef Expression
1 eqidd 2738 . . 3 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) = (𝐵 × {𝑍}))
2 fnconstg 6796 . . . . 5 (𝑍 ∈ V → (𝐵 × {𝑍}) Fn 𝐵)
32adantl 481 . . . 4 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) Fn 𝐵)
4 snnzg 4774 . . . . 5 (𝑍 ∈ V → {𝑍} ≠ ∅)
5 simpl 482 . . . . 5 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) ∈ V)
6 xpexcnv 7942 . . . . 5 (({𝑍} ≠ ∅ ∧ (𝐵 × {𝑍}) ∈ V) → 𝐵 ∈ V)
74, 5, 6syl2an2 686 . . . 4 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝐵 ∈ V)
8 simpr 484 . . . 4 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
9 fnsuppeq0 8217 . . . 4 (((𝐵 × {𝑍}) Fn 𝐵𝐵 ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍})))
103, 7, 8, 9syl3anc 1373 . . 3 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍})))
111, 10mpbird 257 . 2 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅)
12 supp0prc 8188 . 2 (¬ ((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅)
1311, 12pm2.61i 182 1 ((𝐵 × {𝑍}) supp 𝑍) = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  c0 4333  {csn 4626   × cxp 5683   Fn wfn 6556  (class class class)co 7431   supp csupp 8185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-supp 8186
This theorem is referenced by:  fczfsuppd  9426  cantnf  9733  mhp0cl  22150  elrgspnlem4  33249  cantnfresb  43337
  Copyright terms: Public domain W3C validator