MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnxpss Structured version   Visualization version   GIF version

Theorem rnxpss 6203
Description: The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rnxpss ran (𝐴 × 𝐵) ⊆ 𝐵

Proof of Theorem rnxpss
StepHypRef Expression
1 df-rn 5711 . 2 ran (𝐴 × 𝐵) = dom (𝐴 × 𝐵)
2 cnvxp 6188 . . . 4 (𝐴 × 𝐵) = (𝐵 × 𝐴)
32dmeqi 5929 . . 3 dom (𝐴 × 𝐵) = dom (𝐵 × 𝐴)
4 dmxpss 6202 . . 3 dom (𝐵 × 𝐴) ⊆ 𝐵
53, 4eqsstri 4043 . 2 dom (𝐴 × 𝐵) ⊆ 𝐵
61, 5eqsstri 4043 1 ran (𝐴 × 𝐵) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3976   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  ssxpb  6205  ssrnres  6209  resssxp  6301  funssxp  6776  fconst  6807  dff2  7133  dff3  7134  fliftf  7351  frxp2  8185  frxp3  8192  marypha1lem  9502  marypha1  9503  dfac12lem2  10214  brdom4  10599  nqerf  10999  xptrrel  15029  lern  18661  cnconst2  23312  lmss  23327  tsmsxplem1  24182  causs  25351  i1f0  25741  itg10  25742  taylf  26420  noextendseq  27730  perpln2  28737  gsumpart  33038  locfinref  33787  sitg0  34311  heicant  37615  rntrclfvOAI  42647  rtrclex  43579  trclexi  43582  rtrclexi  43583  cnvtrcl0  43588  rntrcl  43590  brtrclfv2  43689  xphe  43743  rfovcnvf1od  43966
  Copyright terms: Public domain W3C validator