| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnxpss | Structured version Visualization version GIF version | ||
| Description: The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| rnxpss | ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5649 | . 2 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
| 2 | cnvxp 6130 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 3 | 2 | dmeqi 5868 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 4 | dmxpss 6144 | . . 3 ⊢ dom (𝐵 × 𝐴) ⊆ 𝐵 | |
| 5 | 3, 4 | eqsstri 3993 | . 2 ⊢ dom ◡(𝐴 × 𝐵) ⊆ 𝐵 |
| 6 | 1, 5 | eqsstri 3993 | 1 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 × cxp 5636 ◡ccnv 5637 dom cdm 5638 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: ssxpb 6147 ssrnres 6151 resssxp 6243 funssxp 6716 fconst 6746 dff2 7071 dff3 7072 fliftf 7290 frxp2 8123 frxp3 8130 marypha1lem 9384 marypha1 9385 dfac12lem2 10098 brdom4 10483 nqerf 10883 xptrrel 14946 lern 18550 cnconst2 23170 lmss 23185 tsmsxplem1 24040 causs 25198 i1f0 25588 itg10 25589 taylf 26268 noextendseq 27579 perpln2 28638 gsumpart 32997 locfinref 33831 sitg0 34337 heicant 37649 rntrclfvOAI 42679 rtrclex 43606 trclexi 43609 rtrclexi 43610 cnvtrcl0 43615 rntrcl 43617 brtrclfv2 43716 xphe 43770 rfovcnvf1od 43993 |
| Copyright terms: Public domain | W3C validator |