MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnxpss Structured version   Visualization version   GIF version

Theorem rnxpss 6064
Description: The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rnxpss ran (𝐴 × 𝐵) ⊆ 𝐵

Proof of Theorem rnxpss
StepHypRef Expression
1 df-rn 5591 . 2 ran (𝐴 × 𝐵) = dom (𝐴 × 𝐵)
2 cnvxp 6049 . . . 4 (𝐴 × 𝐵) = (𝐵 × 𝐴)
32dmeqi 5802 . . 3 dom (𝐴 × 𝐵) = dom (𝐵 × 𝐴)
4 dmxpss 6063 . . 3 dom (𝐵 × 𝐴) ⊆ 𝐵
53, 4eqsstri 3951 . 2 dom (𝐴 × 𝐵) ⊆ 𝐵
61, 5eqsstri 3951 1 ran (𝐴 × 𝐵) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3883   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591
This theorem is referenced by:  ssxpb  6066  ssrnres  6070  resssxp  6162  funssxp  6613  fconst  6644  dff2  6957  dff3  6958  fliftf  7166  marypha1lem  9122  marypha1  9123  dfac12lem2  9831  brdom4  10217  nqerf  10617  xptrrel  14619  lern  18224  cnconst2  22342  lmss  22357  tsmsxplem1  23212  causs  24367  i1f0  24756  itg10  24757  taylf  25425  perpln2  26976  gsumpart  31217  locfinref  31693  sitg0  32213  frxp2  33718  frxp3  33724  noextendseq  33797  heicant  35739  rntrclfvOAI  40429  rtrclex  41114  trclexi  41117  rtrclexi  41118  cnvtrcl0  41123  rntrcl  41125  brtrclfv2  41224  xphe  41278  rfovcnvf1od  41501
  Copyright terms: Public domain W3C validator