| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnxpss | Structured version Visualization version GIF version | ||
| Description: The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| rnxpss | ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5634 | . 2 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
| 2 | cnvxp 6110 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 3 | 2 | dmeqi 5851 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 4 | dmxpss 6124 | . . 3 ⊢ dom (𝐵 × 𝐴) ⊆ 𝐵 | |
| 5 | 3, 4 | eqsstri 3984 | . 2 ⊢ dom ◡(𝐴 × 𝐵) ⊆ 𝐵 |
| 6 | 1, 5 | eqsstri 3984 | 1 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3905 × cxp 5621 ◡ccnv 5622 dom cdm 5623 ran crn 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: ssxpb 6127 ssrnres 6131 resssxp 6222 funssxp 6684 fconst 6714 dff2 7037 dff3 7038 fliftf 7256 frxp2 8084 frxp3 8091 marypha1lem 9342 marypha1 9343 dfac12lem2 10058 brdom4 10443 nqerf 10843 xptrrel 14905 lern 18515 cnconst2 23186 lmss 23201 tsmsxplem1 24056 causs 25214 i1f0 25604 itg10 25605 taylf 26284 noextendseq 27595 perpln2 28674 gsumpart 33023 locfinref 33807 sitg0 34313 heicant 37634 rntrclfvOAI 42664 rtrclex 43590 trclexi 43593 rtrclexi 43594 cnvtrcl0 43599 rntrcl 43601 brtrclfv2 43700 xphe 43754 rfovcnvf1od 43977 |
| Copyright terms: Public domain | W3C validator |