| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnxpss | Structured version Visualization version GIF version | ||
| Description: The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| rnxpss | ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5652 | . 2 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
| 2 | cnvxp 6133 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 3 | 2 | dmeqi 5871 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 4 | dmxpss 6147 | . . 3 ⊢ dom (𝐵 × 𝐴) ⊆ 𝐵 | |
| 5 | 3, 4 | eqsstri 3996 | . 2 ⊢ dom ◡(𝐴 × 𝐵) ⊆ 𝐵 |
| 6 | 1, 5 | eqsstri 3996 | 1 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 × cxp 5639 ◡ccnv 5640 dom cdm 5641 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: ssxpb 6150 ssrnres 6154 resssxp 6246 funssxp 6719 fconst 6749 dff2 7074 dff3 7075 fliftf 7293 frxp2 8126 frxp3 8133 marypha1lem 9391 marypha1 9392 dfac12lem2 10105 brdom4 10490 nqerf 10890 xptrrel 14953 lern 18557 cnconst2 23177 lmss 23192 tsmsxplem1 24047 causs 25205 i1f0 25595 itg10 25596 taylf 26275 noextendseq 27586 perpln2 28645 gsumpart 33004 locfinref 33838 sitg0 34344 heicant 37656 rntrclfvOAI 42686 rtrclex 43613 trclexi 43616 rtrclexi 43617 cnvtrcl0 43622 rntrcl 43624 brtrclfv2 43723 xphe 43777 rfovcnvf1od 44000 |
| Copyright terms: Public domain | W3C validator |