MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnxpss Structured version   Visualization version   GIF version

Theorem rnxpss 6125
Description: The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rnxpss ran (𝐴 × 𝐵) ⊆ 𝐵

Proof of Theorem rnxpss
StepHypRef Expression
1 df-rn 5634 . 2 ran (𝐴 × 𝐵) = dom (𝐴 × 𝐵)
2 cnvxp 6110 . . . 4 (𝐴 × 𝐵) = (𝐵 × 𝐴)
32dmeqi 5851 . . 3 dom (𝐴 × 𝐵) = dom (𝐵 × 𝐴)
4 dmxpss 6124 . . 3 dom (𝐵 × 𝐴) ⊆ 𝐵
53, 4eqsstri 3984 . 2 dom (𝐴 × 𝐵) ⊆ 𝐵
61, 5eqsstri 3984 1 ran (𝐴 × 𝐵) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3905   × cxp 5621  ccnv 5622  dom cdm 5623  ran crn 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634
This theorem is referenced by:  ssxpb  6127  ssrnres  6131  resssxp  6222  funssxp  6684  fconst  6714  dff2  7037  dff3  7038  fliftf  7256  frxp2  8084  frxp3  8091  marypha1lem  9342  marypha1  9343  dfac12lem2  10058  brdom4  10443  nqerf  10843  xptrrel  14905  lern  18515  cnconst2  23186  lmss  23201  tsmsxplem1  24056  causs  25214  i1f0  25604  itg10  25605  taylf  26284  noextendseq  27595  perpln2  28674  gsumpart  33023  locfinref  33807  sitg0  34313  heicant  37634  rntrclfvOAI  42664  rtrclex  43590  trclexi  43593  rtrclexi  43594  cnvtrcl0  43599  rntrcl  43601  brtrclfv2  43700  xphe  43754  rfovcnvf1od  43977
  Copyright terms: Public domain W3C validator