| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnxpss | Structured version Visualization version GIF version | ||
| Description: The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| rnxpss | ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5632 | . 2 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
| 2 | cnvxp 6112 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 3 | 2 | dmeqi 5851 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 4 | dmxpss 6126 | . . 3 ⊢ dom (𝐵 × 𝐴) ⊆ 𝐵 | |
| 5 | 3, 4 | eqsstri 3978 | . 2 ⊢ dom ◡(𝐴 × 𝐵) ⊆ 𝐵 |
| 6 | 1, 5 | eqsstri 3978 | 1 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3899 × cxp 5619 ◡ccnv 5620 dom cdm 5621 ran crn 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: ssxpb 6129 ssrnres 6133 resssxp 6225 funssxp 6687 fconst 6717 dff2 7041 dff3 7042 fliftf 7258 frxp2 8083 frxp3 8090 marypha1lem 9327 marypha1 9328 dfac12lem2 10046 brdom4 10431 nqerf 10831 xptrrel 14897 lern 18507 cnconst2 23208 lmss 23223 tsmsxplem1 24078 causs 25235 i1f0 25625 itg10 25626 taylf 26305 noextendseq 27616 perpln2 28699 gsumpart 33048 locfinref 33865 sitg0 34370 heicant 37705 rntrclfvOAI 42798 rtrclex 43724 trclexi 43727 rtrclexi 43728 cnvtrcl0 43733 rntrcl 43735 brtrclfv2 43834 xphe 43888 rfovcnvf1od 44111 |
| Copyright terms: Public domain | W3C validator |