Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnxpss | Structured version Visualization version GIF version |
Description: The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
rnxpss | ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5591 | . 2 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
2 | cnvxp 6049 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
3 | 2 | dmeqi 5802 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
4 | dmxpss 6063 | . . 3 ⊢ dom (𝐵 × 𝐴) ⊆ 𝐵 | |
5 | 3, 4 | eqsstri 3951 | . 2 ⊢ dom ◡(𝐴 × 𝐵) ⊆ 𝐵 |
6 | 1, 5 | eqsstri 3951 | 1 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 × cxp 5578 ◡ccnv 5579 dom cdm 5580 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: ssxpb 6066 ssrnres 6070 resssxp 6162 funssxp 6613 fconst 6644 dff2 6957 dff3 6958 fliftf 7166 marypha1lem 9122 marypha1 9123 dfac12lem2 9831 brdom4 10217 nqerf 10617 xptrrel 14619 lern 18224 cnconst2 22342 lmss 22357 tsmsxplem1 23212 causs 24367 i1f0 24756 itg10 24757 taylf 25425 perpln2 26976 gsumpart 31217 locfinref 31693 sitg0 32213 frxp2 33718 frxp3 33724 noextendseq 33797 heicant 35739 rntrclfvOAI 40429 rtrclex 41114 trclexi 41117 rtrclexi 41118 cnvtrcl0 41123 rntrcl 41125 brtrclfv2 41224 xphe 41278 rfovcnvf1od 41501 |
Copyright terms: Public domain | W3C validator |