MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnxpss Structured version   Visualization version   GIF version

Theorem rnxpss 6148
Description: The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rnxpss ran (𝐴 × 𝐵) ⊆ 𝐵

Proof of Theorem rnxpss
StepHypRef Expression
1 df-rn 5652 . 2 ran (𝐴 × 𝐵) = dom (𝐴 × 𝐵)
2 cnvxp 6133 . . . 4 (𝐴 × 𝐵) = (𝐵 × 𝐴)
32dmeqi 5871 . . 3 dom (𝐴 × 𝐵) = dom (𝐵 × 𝐴)
4 dmxpss 6147 . . 3 dom (𝐵 × 𝐴) ⊆ 𝐵
53, 4eqsstri 3996 . 2 dom (𝐴 × 𝐵) ⊆ 𝐵
61, 5eqsstri 3996 1 ran (𝐴 × 𝐵) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3917   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by:  ssxpb  6150  ssrnres  6154  resssxp  6246  funssxp  6719  fconst  6749  dff2  7074  dff3  7075  fliftf  7293  frxp2  8126  frxp3  8133  marypha1lem  9391  marypha1  9392  dfac12lem2  10105  brdom4  10490  nqerf  10890  xptrrel  14953  lern  18557  cnconst2  23177  lmss  23192  tsmsxplem1  24047  causs  25205  i1f0  25595  itg10  25596  taylf  26275  noextendseq  27586  perpln2  28645  gsumpart  33004  locfinref  33838  sitg0  34344  heicant  37656  rntrclfvOAI  42686  rtrclex  43613  trclexi  43616  rtrclexi  43617  cnvtrcl0  43622  rntrcl  43624  brtrclfv2  43723  xphe  43777  rfovcnvf1od  44000
  Copyright terms: Public domain W3C validator