MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnxpss Structured version   Visualization version   GIF version

Theorem rnxpss 6116
Description: The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rnxpss ran (𝐴 × 𝐵) ⊆ 𝐵

Proof of Theorem rnxpss
StepHypRef Expression
1 df-rn 5625 . 2 ran (𝐴 × 𝐵) = dom (𝐴 × 𝐵)
2 cnvxp 6101 . . . 4 (𝐴 × 𝐵) = (𝐵 × 𝐴)
32dmeqi 5842 . . 3 dom (𝐴 × 𝐵) = dom (𝐵 × 𝐴)
4 dmxpss 6115 . . 3 dom (𝐵 × 𝐴) ⊆ 𝐵
53, 4eqsstri 3979 . 2 dom (𝐴 × 𝐵) ⊆ 𝐵
61, 5eqsstri 3979 1 ran (𝐴 × 𝐵) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  wss 3900   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625
This theorem is referenced by:  ssxpb  6118  ssrnres  6122  resssxp  6213  funssxp  6675  fconst  6705  dff2  7027  dff3  7028  fliftf  7244  frxp2  8069  frxp3  8076  marypha1lem  9312  marypha1  9313  dfac12lem2  10028  brdom4  10413  nqerf  10813  xptrrel  14879  lern  18489  cnconst2  23191  lmss  23206  tsmsxplem1  24061  causs  25218  i1f0  25608  itg10  25609  taylf  26288  noextendseq  27599  perpln2  28682  gsumpart  33027  locfinref  33844  sitg0  34349  heicant  37674  rntrclfvOAI  42703  rtrclex  43629  trclexi  43632  rtrclexi  43633  cnvtrcl0  43638  rntrcl  43640  brtrclfv2  43739  xphe  43793  rfovcnvf1od  44016
  Copyright terms: Public domain W3C validator