![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnxpss | Structured version Visualization version GIF version |
Description: The range of a Cartesian product is included in its second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
rnxpss | ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5678 | . 2 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
2 | cnvxp 6147 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
3 | 2 | dmeqi 5895 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
4 | dmxpss 6161 | . . 3 ⊢ dom (𝐵 × 𝐴) ⊆ 𝐵 | |
5 | 3, 4 | eqsstri 4009 | . 2 ⊢ dom ◡(𝐴 × 𝐵) ⊆ 𝐵 |
6 | 1, 5 | eqsstri 4009 | 1 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3941 × cxp 5665 ◡ccnv 5666 dom cdm 5667 ran crn 5668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-xp 5673 df-rel 5674 df-cnv 5675 df-dm 5677 df-rn 5678 |
This theorem is referenced by: ssxpb 6164 ssrnres 6168 resssxp 6260 funssxp 6737 fconst 6768 dff2 7091 dff3 7092 fliftf 7305 frxp2 8125 frxp3 8132 marypha1lem 9425 marypha1 9426 dfac12lem2 10136 brdom4 10522 nqerf 10922 xptrrel 14929 lern 18552 cnconst2 23131 lmss 23146 tsmsxplem1 24001 causs 25170 i1f0 25560 itg10 25561 taylf 26238 noextendseq 27541 perpln2 28456 gsumpart 32701 locfinref 33341 sitg0 33865 heicant 37027 rntrclfvOAI 41981 rtrclex 42918 trclexi 42921 rtrclexi 42922 cnvtrcl0 42927 rntrcl 42929 brtrclfv2 43028 xphe 43082 rfovcnvf1od 43305 |
Copyright terms: Public domain | W3C validator |