MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intopsn Structured version   Visualization version   GIF version

Theorem intopsn 18573
Description: The internal operation for a set is the trivial operation iff the set is a singleton. Formerly part of proof of ring1zr 20397. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
Assertion
Ref Expression
intopsn (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))

Proof of Theorem intopsn
StepHypRef Expression
1 simpl 484 . . . 4 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → :(𝐵 × 𝐵)⟶𝐵)
2 id 22 . . . . . 6 (𝐵 = {𝑍} → 𝐵 = {𝑍})
32sqxpeqd 5709 . . . . 5 (𝐵 = {𝑍} → (𝐵 × 𝐵) = ({𝑍} × {𝑍}))
43, 2feq23d 6713 . . . 4 (𝐵 = {𝑍} → ( :(𝐵 × 𝐵)⟶𝐵 :({𝑍} × {𝑍})⟶{𝑍}))
51, 4syl5ibcom 244 . . 3 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} → :({𝑍} × {𝑍})⟶{𝑍}))
6 fdm 6727 . . . . . . 7 ( :(𝐵 × 𝐵)⟶𝐵 → dom = (𝐵 × 𝐵))
76eqcomd 2739 . . . . . 6 ( :(𝐵 × 𝐵)⟶𝐵 → (𝐵 × 𝐵) = dom )
87adantr 482 . . . . 5 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 × 𝐵) = dom )
9 fdm 6727 . . . . . 6 ( :({𝑍} × {𝑍})⟶{𝑍} → dom = ({𝑍} × {𝑍}))
109eqeq2d 2744 . . . . 5 ( :({𝑍} × {𝑍})⟶{𝑍} → ((𝐵 × 𝐵) = dom ↔ (𝐵 × 𝐵) = ({𝑍} × {𝑍})))
118, 10syl5ibcom 244 . . . 4 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :({𝑍} × {𝑍})⟶{𝑍} → (𝐵 × 𝐵) = ({𝑍} × {𝑍})))
12 xpid11 5932 . . . 4 ((𝐵 × 𝐵) = ({𝑍} × {𝑍}) ↔ 𝐵 = {𝑍})
1311, 12imbitrdi 250 . . 3 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :({𝑍} × {𝑍})⟶{𝑍} → 𝐵 = {𝑍}))
145, 13impbid 211 . 2 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ :({𝑍} × {𝑍})⟶{𝑍}))
15 simpr 486 . . . 4 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → 𝑍𝐵)
16 xpsng 7137 . . . 4 ((𝑍𝐵𝑍𝐵) → ({𝑍} × {𝑍}) = {⟨𝑍, 𝑍⟩})
1715, 16sylancom 589 . . 3 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ({𝑍} × {𝑍}) = {⟨𝑍, 𝑍⟩})
1817feq2d 6704 . 2 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :({𝑍} × {𝑍})⟶{𝑍} ↔ :{⟨𝑍, 𝑍⟩}⟶{𝑍}))
19 opex 5465 . . . 4 𝑍, 𝑍⟩ ∈ V
20 fsng 7135 . . . 4 ((⟨𝑍, 𝑍⟩ ∈ V ∧ 𝑍𝐵) → ( :{⟨𝑍, 𝑍⟩}⟶{𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2119, 20mpan 689 . . 3 (𝑍𝐵 → ( :{⟨𝑍, 𝑍⟩}⟶{𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2221adantl 483 . 2 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :{⟨𝑍, 𝑍⟩}⟶{𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2314, 18, 223bitrd 305 1 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  {csn 4629  cop 4635   × cxp 5675  dom cdm 5677  wf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551
This theorem is referenced by:  mgmb1mgm1  18574
  Copyright terms: Public domain W3C validator