MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intopsn Structured version   Visualization version   GIF version

Theorem intopsn 18667
Description: The internal operation for a set is the trivial operation iff the set is a singleton. Formerly part of proof of ring1zr 20777. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
Assertion
Ref Expression
intopsn (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))

Proof of Theorem intopsn
StepHypRef Expression
1 simpl 482 . . . 4 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → :(𝐵 × 𝐵)⟶𝐵)
2 id 22 . . . . . 6 (𝐵 = {𝑍} → 𝐵 = {𝑍})
32sqxpeqd 5717 . . . . 5 (𝐵 = {𝑍} → (𝐵 × 𝐵) = ({𝑍} × {𝑍}))
43, 2feq23d 6731 . . . 4 (𝐵 = {𝑍} → ( :(𝐵 × 𝐵)⟶𝐵 :({𝑍} × {𝑍})⟶{𝑍}))
51, 4syl5ibcom 245 . . 3 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} → :({𝑍} × {𝑍})⟶{𝑍}))
6 fdm 6745 . . . . . . 7 ( :(𝐵 × 𝐵)⟶𝐵 → dom = (𝐵 × 𝐵))
76eqcomd 2743 . . . . . 6 ( :(𝐵 × 𝐵)⟶𝐵 → (𝐵 × 𝐵) = dom )
87adantr 480 . . . . 5 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 × 𝐵) = dom )
9 fdm 6745 . . . . . 6 ( :({𝑍} × {𝑍})⟶{𝑍} → dom = ({𝑍} × {𝑍}))
109eqeq2d 2748 . . . . 5 ( :({𝑍} × {𝑍})⟶{𝑍} → ((𝐵 × 𝐵) = dom ↔ (𝐵 × 𝐵) = ({𝑍} × {𝑍})))
118, 10syl5ibcom 245 . . . 4 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :({𝑍} × {𝑍})⟶{𝑍} → (𝐵 × 𝐵) = ({𝑍} × {𝑍})))
12 xpid11 5943 . . . 4 ((𝐵 × 𝐵) = ({𝑍} × {𝑍}) ↔ 𝐵 = {𝑍})
1311, 12imbitrdi 251 . . 3 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :({𝑍} × {𝑍})⟶{𝑍} → 𝐵 = {𝑍}))
145, 13impbid 212 . 2 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ :({𝑍} × {𝑍})⟶{𝑍}))
15 simpr 484 . . . 4 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → 𝑍𝐵)
16 xpsng 7159 . . . 4 ((𝑍𝐵𝑍𝐵) → ({𝑍} × {𝑍}) = {⟨𝑍, 𝑍⟩})
1715, 16sylancom 588 . . 3 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ({𝑍} × {𝑍}) = {⟨𝑍, 𝑍⟩})
1817feq2d 6722 . 2 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :({𝑍} × {𝑍})⟶{𝑍} ↔ :{⟨𝑍, 𝑍⟩}⟶{𝑍}))
19 opex 5469 . . . 4 𝑍, 𝑍⟩ ∈ V
20 fsng 7157 . . . 4 ((⟨𝑍, 𝑍⟩ ∈ V ∧ 𝑍𝐵) → ( :{⟨𝑍, 𝑍⟩}⟶{𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2119, 20mpan 690 . . 3 (𝑍𝐵 → ( :{⟨𝑍, 𝑍⟩}⟶{𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2221adantl 481 . 2 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → ( :{⟨𝑍, 𝑍⟩}⟶{𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2314, 18, 223bitrd 305 1 (( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  {csn 4626  cop 4632   × cxp 5683  dom cdm 5685  wf 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568
This theorem is referenced by:  mgmb1mgm1  18668
  Copyright terms: Public domain W3C validator