NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  addcexg GIF version

Theorem addcexg 4394
Description: The cardinal sum of two sets is a set. (Contributed by SF, 15-Jan-2015.)
Assertion
Ref Expression
addcexg ((A V B W) → (A +c B) V)

Proof of Theorem addcexg
StepHypRef Expression
1 dfaddc2 4382 . 2 (A +c B) = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11B) “k A)
2 pw1exg 4303 . . . . 5 (B W1B V)
3 pw1exg 4303 . . . . 5 (1B V → 11B V)
4 addcexlem 4383 . . . . . 6 ( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) V
5 imakexg 4300 . . . . . 6 ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) V 11B V) → (( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11B) V)
64, 5mpan 651 . . . . 5 (11B V → (( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11B) V)
72, 3, 63syl 18 . . . 4 (B W → (( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11B) V)
8 imakexg 4300 . . . 4 (((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11B) V A V) → ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11B) “k A) V)
97, 8sylan 457 . . 3 ((B W A V) → ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11B) “k A) V)
109ancoms 439 . 2 ((A V B W) → ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11B) “k A) V)
111, 10syl5eqel 2437 1 ((A V B W) → (A +c B) V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wcel 1710  Vcvv 2860  ccompl 3206   cdif 3207  cun 3208  cin 3209  csymdif 3210  1cc1c 4135  1cpw1 4136   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   SIk csik 4182   Sk cssetk 4184   +c cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-p6 4192  df-sik 4193  df-ssetk 4194  df-addc 4379
This theorem is referenced by:  addcex  4395  lefinaddc  4451  leltfintr  4459  ltfinp1  4463  sucevenodd  4511  sucoddeven  4512  addlec  6209  fnfreclem3  6320
  Copyright terms: Public domain W3C validator