New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pw1ex | GIF version |
Description: The unit power class preserves sethood. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
pw1ex.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
pw1ex | ⊢ ℘1A ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1ex.1 | . 2 ⊢ A ∈ V | |
2 | pw1exg 4302 | . 2 ⊢ (A ∈ V → ℘1A ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ℘1A ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2859 ℘1cpw1 4135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-si 4083 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-pw 3724 df-sn 3741 df-pr 3742 df-opk 4058 df-1c 4136 df-pw1 4137 df-xpk 4185 df-cnvk 4186 df-imak 4189 df-p6 4191 df-sik 4192 |
This theorem is referenced by: ins2kexg 4305 ins3kexg 4306 imagekexg 4311 addcexlem 4382 nncex 4396 nnc0suc 4412 nncaddccl 4419 nnsucelrlem1 4424 nndisjeq 4429 preaddccan2lem1 4454 ltfinex 4464 ssfin 4470 ncfinraiselem2 4480 ncfinlowerlem1 4482 tfinrelkex 4487 evenfinex 4503 oddfinex 4504 evenodddisjlem1 4515 nnadjoinlem1 4519 nnpweqlem1 4522 srelkex 4525 sfintfinlem1 4531 tfinnnlem1 4533 spfinex 4537 vfinspsslem1 4550 vfinspss 4551 vfinncsp 4554 phiexg 4571 opexg 4587 proj1exg 4591 proj2exg 4592 phialllem1 4616 setconslem5 4735 1stex 4739 swapex 4742 si3ex 5806 pw1fnval 5851 pw1fnex 5852 fnpw1fn 5853 enpw1pw 6075 enprmaplem4 6079 ncpw1 6152 ncpwpw1 6153 ncspw1eu 6159 eqtc 6161 ceex 6174 ce0addcnnul 6179 cenc 6181 tc11 6228 taddc 6229 cet 6234 tce2 6236 te0c 6237 ce0lenc1 6239 tlenc1c 6240 tcfnex 6244 nchoicelem9 6297 nchoicelem11 6299 nchoicelem16 6304 |
Copyright terms: Public domain | W3C validator |