Home Intuitionistic Logic ExplorerTheorem List (p. 10 of 105) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 901-1000   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theorem3anrot 901 Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.)
((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))

Theorem3orrot 902 Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.)
((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))

Theorem3ancoma 903 Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))

Theorem3ancomb 904 Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))

Theorem3orcomb 905 Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.)
((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))

Theorem3anrev 906 Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) ↔ (𝜒𝜓𝜑))

Theorem3anan32 907 Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
((𝜑𝜓𝜒) ↔ ((𝜑𝜒) ∧ 𝜓))

Theorem3anan12 908 Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
((𝜑𝜓𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))

Theoremanandi3 909 Distribution of triple conjunction over conjunction. (Contributed by David A. Wheeler, 4-Nov-2018.)
((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))

Theoremanandi3r 910 Distribution of triple conjunction over conjunction. (Contributed by David A. Wheeler, 4-Nov-2018.)
((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))

Theorem3ioran 911 Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011.)
(¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒))

Theorem3simpa 912 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) → (𝜑𝜓))

Theorem3simpb 913 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) → (𝜑𝜒))

Theorem3simpc 914 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((𝜑𝜓𝜒) → (𝜓𝜒))

Theoremsimp1 915 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) → 𝜑)

Theoremsimp2 916 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) → 𝜓)

Theoremsimp3 917 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
((𝜑𝜓𝜒) → 𝜒)

Theoremsimpl1 918 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
(((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)

Theoremsimpl2 919 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
(((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)

Theoremsimpl3 920 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
(((𝜑𝜓𝜒) ∧ 𝜃) → 𝜒)

Theoremsimpr1 921 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜓)

Theoremsimpr2 922 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜒)

Theoremsimpr3 923 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
((𝜑 ∧ (𝜓𝜒𝜃)) → 𝜃)

Theoremsimp1i 924 Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
(𝜑𝜓𝜒)       𝜑

Theoremsimp2i 925 Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
(𝜑𝜓𝜒)       𝜓

Theoremsimp3i 926 Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
(𝜑𝜓𝜒)       𝜒

Theoremsimp1d 927 Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.)
(𝜑 → (𝜓𝜒𝜃))       (𝜑𝜓)

Theoremsimp2d 928 Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.)
(𝜑 → (𝜓𝜒𝜃))       (𝜑𝜒)

Theoremsimp3d 929 Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.)
(𝜑 → (𝜓𝜒𝜃))       (𝜑𝜃)

Theoremsimp1bi 930 Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑 ↔ (𝜓𝜒𝜃))       (𝜑𝜓)

Theoremsimp2bi 931 Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑 ↔ (𝜓𝜒𝜃))       (𝜑𝜒)

Theoremsimp3bi 932 Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑 ↔ (𝜓𝜒𝜃))       (𝜑𝜃)

Theorem3adant1 933 Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Jul-1995.)
((𝜑𝜓) → 𝜒)       ((𝜃𝜑𝜓) → 𝜒)

Theorem3adant2 934 Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Jul-1995.)
((𝜑𝜓) → 𝜒)       ((𝜑𝜃𝜓) → 𝜒)

Theorem3adant3 935 Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Jul-1995.)
((𝜑𝜓) → 𝜒)       ((𝜑𝜓𝜃) → 𝜒)

Theorem3ad2ant1 936 Deduction adding conjuncts to an antecedent. (Contributed by NM, 21-Apr-2005.)
(𝜑𝜒)       ((𝜑𝜓𝜃) → 𝜒)

Theorem3ad2ant2 937 Deduction adding conjuncts to an antecedent. (Contributed by NM, 21-Apr-2005.)
(𝜑𝜒)       ((𝜓𝜑𝜃) → 𝜒)

Theorem3ad2ant3 938 Deduction adding conjuncts to an antecedent. (Contributed by NM, 21-Apr-2005.)
(𝜑𝜒)       ((𝜓𝜃𝜑) → 𝜒)

Theoremsimp1l 939 Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.)
(((𝜑𝜓) ∧ 𝜒𝜃) → 𝜑)

Theoremsimp1r 940 Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.)
(((𝜑𝜓) ∧ 𝜒𝜃) → 𝜓)

Theoremsimp2l 941 Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.)
((𝜑 ∧ (𝜓𝜒) ∧ 𝜃) → 𝜓)

Theoremsimp2r 942 Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.)
((𝜑 ∧ (𝜓𝜒) ∧ 𝜃) → 𝜒)

Theoremsimp3l 943 Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.)
((𝜑𝜓 ∧ (𝜒𝜃)) → 𝜒)

Theoremsimp3r 944 Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.)
((𝜑𝜓 ∧ (𝜒𝜃)) → 𝜃)

Theoremsimp11 945 Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
(((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)

Theoremsimp12 946 Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
(((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)

Theoremsimp13 947 Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
(((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)

Theoremsimp21 948 Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
((𝜑 ∧ (𝜓𝜒𝜃) ∧ 𝜏) → 𝜓)

Theoremsimp22 949 Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
((𝜑 ∧ (𝜓𝜒𝜃) ∧ 𝜏) → 𝜒)

Theoremsimp23 950 Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
((𝜑 ∧ (𝜓𝜒𝜃) ∧ 𝜏) → 𝜃)

Theoremsimp31 951 Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
((𝜑𝜓 ∧ (𝜒𝜃𝜏)) → 𝜒)

Theoremsimp32 952 Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
((𝜑𝜓 ∧ (𝜒𝜃𝜏)) → 𝜃)

Theoremsimp33 953 Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
((𝜑𝜓 ∧ (𝜒𝜃𝜏)) → 𝜏)

Theoremsimpll1 954 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)

Theoremsimpll2 955 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓)

Theoremsimpll3 956 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜒)

Theoremsimplr1 957 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜑)

Theoremsimplr2 958 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜓)

Theoremsimplr3 959 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜒)

Theoremsimprl1 960 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜑)

Theoremsimprl2 961 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)

Theoremsimprl3 962 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜒)

Theoremsimprr1 963 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜑)

Theoremsimprr2 964 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)

Theoremsimprr3 965 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜒)

Theoremsimpl1l 966 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((𝜑𝜓) ∧ 𝜒𝜃) ∧ 𝜏) → 𝜑)

Theoremsimpl1r 967 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((𝜑𝜓) ∧ 𝜒𝜃) ∧ 𝜏) → 𝜓)

Theoremsimpl2l 968 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) ∧ 𝜏) → 𝜑)

Theoremsimpl2r 969 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) ∧ 𝜏) → 𝜓)

Theoremsimpl3l 970 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜒𝜃 ∧ (𝜑𝜓)) ∧ 𝜏) → 𝜑)

Theoremsimpl3r 971 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜒𝜃 ∧ (𝜑𝜓)) ∧ 𝜏) → 𝜓)

Theoremsimpr1l 972 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜑)

Theoremsimpr1r 973 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)

Theoremsimpr2l 974 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜑)

Theoremsimpr2r 975 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)

Theoremsimpr3l 976 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)

Theoremsimpr3r 977 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)

Theoremsimp1ll 978 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜑)

Theoremsimp1lr 979 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃𝜏) → 𝜓)

Theoremsimp1rl 980 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜒 ∧ (𝜑𝜓)) ∧ 𝜃𝜏) → 𝜑)

Theoremsimp1rr 981 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜒 ∧ (𝜑𝜓)) ∧ 𝜃𝜏) → 𝜓)

Theoremsimp2ll 982 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜃 ∧ ((𝜑𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑)

Theoremsimp2lr 983 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜃 ∧ ((𝜑𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓)

Theoremsimp2rl 984 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜃 ∧ (𝜒 ∧ (𝜑𝜓)) ∧ 𝜏) → 𝜑)

Theoremsimp2rr 985 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜃 ∧ (𝜒 ∧ (𝜑𝜓)) ∧ 𝜏) → 𝜓)

Theoremsimp3ll 986 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜑)

Theoremsimp3lr 987 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜃𝜏 ∧ ((𝜑𝜓) ∧ 𝜒)) → 𝜓)

Theoremsimp3rl 988 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜃𝜏 ∧ (𝜒 ∧ (𝜑𝜓))) → 𝜑)

Theoremsimp3rr 989 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜃𝜏 ∧ (𝜒 ∧ (𝜑𝜓))) → 𝜓)

Theoremsimpl11 990 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂) → 𝜑)

Theoremsimpl12 991 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂) → 𝜓)

Theoremsimpl13 992 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂) → 𝜒)

Theoremsimpl21 993 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑)

Theoremsimpl22 994 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜓)

Theoremsimpl23 995 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒)

Theoremsimpl31 996 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜑)

Theoremsimpl32 997 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜓)

Theoremsimpl33 998 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜒)

Theoremsimpr11 999 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜑)

Theoremsimpr12 1000 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜓)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10490
 Copyright terms: Public domain < Previous  Next >