MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volivth Structured version   Visualization version   GIF version

Theorem volivth 24208
Description: The Intermediate Value Theorem for the Lebesgue volume function. For any positive 𝐵 ≤ (vol‘𝐴), there is a measurable subset of 𝐴 whose volume is 𝐵. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volivth ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem volivth
Dummy variables 𝑢 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐴 ∈ dom vol)
2 mnfxr 10698 . . . . . 6 -∞ ∈ ℝ*
32a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → -∞ ∈ ℝ*)
4 iccssxr 12820 . . . . . . 7 (0[,](vol‘𝐴)) ⊆ ℝ*
5 simpr 487 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ∈ (0[,](vol‘𝐴)))
64, 5sseldi 3965 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ∈ ℝ*)
76adantr 483 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈ ℝ*)
8 iccssxr 12820 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
9 volf 24130 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
109ffvelrni 6850 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
118, 10sseldi 3965 . . . . . . 7 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
1211adantr 483 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (vol‘𝐴) ∈ ℝ*)
1312adantr 483 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) ∈ ℝ*)
14 0xr 10688 . . . . . . . . . 10 0 ∈ ℝ*
15 elicc1 12783 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → (𝐵 ∈ (0[,](vol‘𝐴)) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵𝐵 ≤ (vol‘𝐴))))
1614, 12, 15sylancr 589 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ∈ (0[,](vol‘𝐴)) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵𝐵 ≤ (vol‘𝐴))))
175, 16mpbid 234 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵𝐵 ≤ (vol‘𝐴)))
1817simp2d 1139 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 0 ≤ 𝐵)
1918adantr 483 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 0 ≤ 𝐵)
20 mnflt0 12521 . . . . . . . 8 -∞ < 0
21 xrltletr 12551 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝐵 ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ 𝐵) → -∞ < 𝐵))
2220, 21mpani 694 . . . . . . 7 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 → -∞ < 𝐵))
232, 14, 22mp3an12 1447 . . . . . 6 (𝐵 ∈ ℝ* → (0 ≤ 𝐵 → -∞ < 𝐵))
247, 19, 23sylc 65 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → -∞ < 𝐵)
25 simpr 487 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 < (vol‘𝐴))
26 xrre2 12564 . . . . 5 (((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) ∧ (-∞ < 𝐵𝐵 < (vol‘𝐴))) → 𝐵 ∈ ℝ)
273, 7, 13, 24, 25, 26syl32anc 1374 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈ ℝ)
28 volsup2 24206 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
291, 27, 25, 28syl3anc 1367 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
30 nnre 11645 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
3130ad2antrl 726 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝑛 ∈ ℝ)
3231renegcld 11067 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 ∈ ℝ)
3327adantr 483 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ∈ ℝ)
34 0red 10644 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 ∈ ℝ)
35 nngt0 11669 . . . . . . . 8 (𝑛 ∈ ℕ → 0 < 𝑛)
3635ad2antrl 726 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 < 𝑛)
3731lt0neg2d 11210 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (0 < 𝑛 ↔ -𝑛 < 0))
3836, 37mpbid 234 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 < 0)
3932, 34, 31, 38, 36lttrd 10801 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 < 𝑛)
40 iccssre 12819 . . . . . 6 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ⊆ ℝ)
4132, 31, 40syl2anc 586 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]𝑛) ⊆ ℝ)
42 ax-resscn 10594 . . . . . . 7 ℝ ⊆ ℂ
43 ssid 3989 . . . . . . 7 ℂ ⊆ ℂ
44 cncfss 23507 . . . . . . 7 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
4542, 43, 44mp2an 690 . . . . . 6 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
461adantr 483 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐴 ∈ dom vol)
47 eqid 2821 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) = (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))
4847volcn 24207 . . . . . . 7 ((𝐴 ∈ dom vol ∧ -𝑛 ∈ ℝ) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ))
4946, 32, 48syl2anc 586 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ))
5045, 49sseldi 3965 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℂ))
5141sselda 3967 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ (-𝑛[,]𝑛)) → 𝑢 ∈ ℝ)
52 cncff 23501 . . . . . . . 8 ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))):ℝ⟶ℝ)
5349, 52syl 17 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))):ℝ⟶ℝ)
5453ffvelrnda 6851 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ ℝ) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑢) ∈ ℝ)
5551, 54syldan 593 . . . . 5 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ (-𝑛[,]𝑛)) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑢) ∈ ℝ)
56 oveq2 7164 . . . . . . . . . . . 12 (𝑦 = -𝑛 → (-𝑛[,]𝑦) = (-𝑛[,]-𝑛))
5756ineq2d 4189 . . . . . . . . . . 11 (𝑦 = -𝑛 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]-𝑛)))
5857fveq2d 6674 . . . . . . . . . 10 (𝑦 = -𝑛 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))))
59 fvex 6683 . . . . . . . . . 10 (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) ∈ V
6058, 47, 59fvmpt 6768 . . . . . . . . 9 (-𝑛 ∈ ℝ → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))))
6132, 60syl 17 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))))
62 inss2 4206 . . . . . . . . . . . 12 (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ (-𝑛[,]-𝑛)
6332rexrd 10691 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 ∈ ℝ*)
64 iccid 12784 . . . . . . . . . . . . 13 (-𝑛 ∈ ℝ* → (-𝑛[,]-𝑛) = {-𝑛})
6563, 64syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]-𝑛) = {-𝑛})
6662, 65sseqtrid 4019 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ {-𝑛})
6732snssd 4742 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → {-𝑛} ⊆ ℝ)
6866, 67sstrd 3977 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ ℝ)
69 ovolsn 24096 . . . . . . . . . . . 12 (-𝑛 ∈ ℝ → (vol*‘{-𝑛}) = 0)
7032, 69syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol*‘{-𝑛}) = 0)
71 ovolssnul 24088 . . . . . . . . . . 11 (((𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ {-𝑛} ∧ {-𝑛} ⊆ ℝ ∧ (vol*‘{-𝑛}) = 0) → (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0)
7266, 67, 70, 71syl3anc 1367 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0)
73 nulmbl 24136 . . . . . . . . . 10 (((𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ ℝ ∧ (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0) → (𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol)
7468, 72, 73syl2anc 586 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol)
75 mblvol 24131 . . . . . . . . 9 ((𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) = (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))))
7674, 75syl 17 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) = (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))))
7761, 76, 723eqtrd 2860 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = 0)
7819adantr 483 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 ≤ 𝐵)
7977, 78eqbrtrd 5088 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) ≤ 𝐵)
807adantr 483 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ∈ ℝ*)
81 iccmbl 24167 . . . . . . . . . . 11 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol)
8232, 31, 81syl2anc 586 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]𝑛) ∈ dom vol)
83 inmbl 24143 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑛) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
8446, 82, 83syl2anc 586 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
859ffvelrni 6850 . . . . . . . . . 10 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ (0[,]+∞))
868, 85sseldi 3965 . . . . . . . . 9 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
8784, 86syl 17 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
88 simprr 771 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
8980, 87, 88xrltled 12544 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ≤ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
90 oveq2 7164 . . . . . . . . . . 11 (𝑦 = 𝑛 → (-𝑛[,]𝑦) = (-𝑛[,]𝑛))
9190ineq2d 4189 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]𝑛)))
9291fveq2d 6674 . . . . . . . . 9 (𝑦 = 𝑛 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
93 fvex 6683 . . . . . . . . 9 (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ V
9492, 47, 93fvmpt 6768 . . . . . . . 8 (𝑛 ∈ ℝ → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
9531, 94syl 17 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
9689, 95breqtrrd 5094 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ≤ ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛))
9779, 96jca 514 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) ≤ 𝐵𝐵 ≤ ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛)))
9832, 31, 33, 39, 41, 50, 55, 97ivthle 24057 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ∃𝑧 ∈ (-𝑛[,]𝑛)((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵)
9941sselda 3967 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → 𝑧 ∈ ℝ)
100 oveq2 7164 . . . . . . . . . . 11 (𝑦 = 𝑧 → (-𝑛[,]𝑦) = (-𝑛[,]𝑧))
101100ineq2d 4189 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]𝑧)))
102101fveq2d 6674 . . . . . . . . 9 (𝑦 = 𝑧 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧))))
103 fvex 6683 . . . . . . . . 9 (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) ∈ V
104102, 47, 103fvmpt 6768 . . . . . . . 8 (𝑧 ∈ ℝ → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧))))
10599, 104syl 17 . . . . . . 7 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧))))
106105eqeq1d 2823 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵))
10746adantr 483 . . . . . . . . 9 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → 𝐴 ∈ dom vol)
10832adantr 483 . . . . . . . . . 10 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → -𝑛 ∈ ℝ)
10999adantrr 715 . . . . . . . . . 10 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → 𝑧 ∈ ℝ)
110 iccmbl 24167 . . . . . . . . . 10 ((-𝑛 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑛[,]𝑧) ∈ dom vol)
111108, 109, 110syl2anc 586 . . . . . . . . 9 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (-𝑛[,]𝑧) ∈ dom vol)
112 inmbl 24143 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑧) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol)
113107, 111, 112syl2anc 586 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol)
114 inss1 4205 . . . . . . . . 9 (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴
115114a1i 11 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴)
116 simprr 771 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)
117 sseq1 3992 . . . . . . . . . 10 (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → (𝑥𝐴 ↔ (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴))
118 fveqeq2 6679 . . . . . . . . . 10 (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → ((vol‘𝑥) = 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵))
119117, 118anbi12d 632 . . . . . . . . 9 (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → ((𝑥𝐴 ∧ (vol‘𝑥) = 𝐵) ↔ ((𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴 ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)))
120119rspcev 3623 . . . . . . . 8 (((𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol ∧ ((𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴 ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
121113, 115, 116, 120syl12anc 834 . . . . . . 7 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
122121expr 459 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → ((vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵)))
123106, 122sylbid 242 . . . . 5 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵)))
124123rexlimdva 3284 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (∃𝑧 ∈ (-𝑛[,]𝑛)((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵)))
12598, 124mpd 15 . . 3 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
12629, 125rexlimddv 3291 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
127 simpll 765 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐴 ∈ dom vol)
128 ssid 3989 . . . 4 𝐴𝐴
129128a1i 11 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐴𝐴)
130 simpr 487 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐵 = (vol‘𝐴))
131130eqcomd 2827 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → (vol‘𝐴) = 𝐵)
132 sseq1 3992 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
133 fveqeq2 6679 . . . . 5 (𝑥 = 𝐴 → ((vol‘𝑥) = 𝐵 ↔ (vol‘𝐴) = 𝐵))
134132, 133anbi12d 632 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐴 ∧ (vol‘𝑥) = 𝐵) ↔ (𝐴𝐴 ∧ (vol‘𝐴) = 𝐵)))
135134rspcev 3623 . . 3 ((𝐴 ∈ dom vol ∧ (𝐴𝐴 ∧ (vol‘𝐴) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
136127, 129, 131, 135syl12anc 834 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
13717simp3d 1140 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ≤ (vol‘𝐴))
138 xrleloe 12538 . . . 4 ((𝐵 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → (𝐵 ≤ (vol‘𝐴) ↔ (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴))))
1396, 12, 138syl2anc 586 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ≤ (vol‘𝐴) ↔ (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴))))
140137, 139mpbid 234 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴)))
141126, 136, 140mpjaodan 955 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  cin 3935  wss 3936  {csn 4567   class class class wbr 5066  cmpt 5146  dom cdm 5555  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  -cneg 10871  cn 11638  [,]cicc 12742  cnccncf 23484  vol*covol 24063  volcvol 24064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-cmp 21995  df-cncf 23486  df-ovol 24065  df-vol 24066
This theorem is referenced by:  itg2const2  24342
  Copyright terms: Public domain W3C validator