MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir Structured version   Visualization version   GIF version

Theorem lgsdir 24771
Description: The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that 𝐴 and 𝐵 are odd positive integers). Together with lgsqr 24790 this implies that the product of two quadratic residues or nonresidues is a residue, and the product of a residue and a nonresidue is a nonresidue. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))

Proof of Theorem lgsdir
Dummy variables 𝑘 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 9847 . . . . . . 7 1 ∈ ℂ
2 0cn 9885 . . . . . . 7 0 ∈ ℂ
31, 2keepel 4101 . . . . . 6 if((𝐵↑2) = 1, 1, 0) ∈ ℂ
43mulid2i 9896 . . . . 5 (1 · if((𝐵↑2) = 1, 1, 0)) = if((𝐵↑2) = 1, 1, 0)
5 iftrue 4038 . . . . . . 7 ((𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) = 1)
65adantl 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → if((𝐴↑2) = 1, 1, 0) = 1)
76oveq1d 6539 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = (1 · if((𝐵↑2) = 1, 1, 0)))
8 simpl1 1056 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℤ)
98zcnd 11312 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℂ)
109ad2antrr 757 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → 𝐴 ∈ ℂ)
11 simpl2 1057 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℤ)
1211zcnd 11312 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℂ)
1312ad2antrr 757 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → 𝐵 ∈ ℂ)
1410, 13sqmuld 12834 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)))
15 simpr 475 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (𝐴↑2) = 1)
1615oveq1d 6539 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴↑2) · (𝐵↑2)) = (1 · (𝐵↑2)))
1712sqcld 12820 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐵↑2) ∈ ℂ)
1817ad2antrr 757 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (𝐵↑2) ∈ ℂ)
1918mulid2d 9911 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (1 · (𝐵↑2)) = (𝐵↑2))
2014, 16, 193eqtrd 2644 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → ((𝐴 · 𝐵)↑2) = (𝐵↑2))
2120eqeq1d 2608 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (((𝐴 · 𝐵)↑2) = 1 ↔ (𝐵↑2) = 1))
2221ifbid 4054 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → if(((𝐴 · 𝐵)↑2) = 1, 1, 0) = if((𝐵↑2) = 1, 1, 0))
234, 7, 223eqtr4a 2666 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
243mul02i 10073 . . . . 5 (0 · if((𝐵↑2) = 1, 1, 0)) = 0
25 iffalse 4041 . . . . . . 7 (¬ (𝐴↑2) = 1 → if((𝐴↑2) = 1, 1, 0) = 0)
2625adantl 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → if((𝐴↑2) = 1, 1, 0) = 0)
2726oveq1d 6539 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = (0 · if((𝐵↑2) = 1, 1, 0)))
28 dvdsmul1 14784 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵))
298, 11, 28syl2anc 690 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∥ (𝐴 · 𝐵))
308, 11zmulcld 11317 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℤ)
31 dvdssq 15061 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐴 · 𝐵) ∈ ℤ) → (𝐴 ∥ (𝐴 · 𝐵) ↔ (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2)))
328, 30, 31syl2anc 690 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 ∥ (𝐴 · 𝐵) ↔ (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2)))
3329, 32mpbid 220 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2))
3433adantr 479 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∥ ((𝐴 · 𝐵)↑2))
35 breq2 4578 . . . . . . . . 9 (((𝐴 · 𝐵)↑2) = 1 → ((𝐴↑2) ∥ ((𝐴 · 𝐵)↑2) ↔ (𝐴↑2) ∥ 1))
3634, 35syl5ibcom 233 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (((𝐴 · 𝐵)↑2) = 1 → (𝐴↑2) ∥ 1))
37 simprl 789 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
3837neneqd 2783 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ¬ 𝐴 = 0)
39 sqeq0 12741 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
409, 39syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴↑2) = 0 ↔ 𝐴 = 0))
4138, 40mtbird 313 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ¬ (𝐴↑2) = 0)
42 zsqcl2 12755 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℕ0)
438, 42syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∈ ℕ0)
44 elnn0 11138 . . . . . . . . . . . . . . . 16 ((𝐴↑2) ∈ ℕ0 ↔ ((𝐴↑2) ∈ ℕ ∨ (𝐴↑2) = 0))
4543, 44sylib 206 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴↑2) ∈ ℕ ∨ (𝐴↑2) = 0))
4645ord 390 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (¬ (𝐴↑2) ∈ ℕ → (𝐴↑2) = 0))
4741, 46mt3d 138 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴↑2) ∈ ℕ)
4847adantr 479 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℕ)
4948nnzd 11310 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℤ)
50 1nn 10875 . . . . . . . . . . 11 1 ∈ ℕ
51 dvdsle 14813 . . . . . . . . . . 11 (((𝐴↑2) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝐴↑2) ∥ 1 → (𝐴↑2) ≤ 1))
5249, 50, 51sylancl 692 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → (𝐴↑2) ≤ 1))
5348nnge1d 10907 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → 1 ≤ (𝐴↑2))
5452, 53jctird 564 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2))))
5548nnred 10879 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴↑2) ∈ ℝ)
56 1re 9892 . . . . . . . . . 10 1 ∈ ℝ
57 letri3 9971 . . . . . . . . . 10 (((𝐴↑2) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴↑2) = 1 ↔ ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2))))
5855, 56, 57sylancl 692 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) = 1 ↔ ((𝐴↑2) ≤ 1 ∧ 1 ≤ (𝐴↑2))))
5954, 58sylibrd 247 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴↑2) ∥ 1 → (𝐴↑2) = 1))
6036, 59syld 45 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (((𝐴 · 𝐵)↑2) = 1 → (𝐴↑2) = 1))
6160con3dimp 455 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → ¬ ((𝐴 · 𝐵)↑2) = 1)
6261iffalsed 4043 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → if(((𝐴 · 𝐵)↑2) = 1, 1, 0) = 0)
6324, 27, 623eqtr4a 2666 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) ∧ ¬ (𝐴↑2) = 1) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
6423, 63pm2.61dan 827 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
65 oveq2 6532 . . . . 5 (𝑁 = 0 → (𝐴 /L 𝑁) = (𝐴 /L 0))
66 lgs0 24749 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
678, 66syl 17 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
6865, 67sylan9eqr 2662 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐴 /L 𝑁) = if((𝐴↑2) = 1, 1, 0))
69 oveq2 6532 . . . . 5 (𝑁 = 0 → (𝐵 /L 𝑁) = (𝐵 /L 0))
70 lgs0 24749 . . . . . 6 (𝐵 ∈ ℤ → (𝐵 /L 0) = if((𝐵↑2) = 1, 1, 0))
7111, 70syl 17 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐵 /L 0) = if((𝐵↑2) = 1, 1, 0))
7269, 71sylan9eqr 2662 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → (𝐵 /L 𝑁) = if((𝐵↑2) = 1, 1, 0))
7368, 72oveq12d 6542 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = (if((𝐴↑2) = 1, 1, 0) · if((𝐵↑2) = 1, 1, 0)))
74 oveq2 6532 . . . 4 (𝑁 = 0 → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 · 𝐵) /L 0))
75 lgs0 24749 . . . . 5 ((𝐴 · 𝐵) ∈ ℤ → ((𝐴 · 𝐵) /L 0) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
7630, 75syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 0) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
7774, 76sylan9eqr 2662 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 · 𝐵) /L 𝑁) = if(((𝐴 · 𝐵)↑2) = 1, 1, 0))
7864, 73, 773eqtr4rd 2651 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
79 lgsdilem 24763 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
8079adantr 479 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)))
81 mulcl 9873 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
8281adantl 480 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
83 mulcom 9875 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
8483adantl 480 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
85 mulass 9877 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
8685adantl 480 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
87 simpl3 1058 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝑁 ∈ ℤ)
88 nnabscl 13856 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
8987, 88sylan 486 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
90 nnuz 11552 . . . . . 6 ℕ = (ℤ‘1)
9189, 90syl6eleq 2694 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ (ℤ‘1))
92 simpll1 1092 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ)
93 simpll3 1094 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
94 simpr 475 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0)
95 eqid 2606 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
9695lgsfcl3 24757 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
9792, 93, 94, 96syl3anc 1317 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
98 elfznn 12193 . . . . . . 7 (𝑘 ∈ (1...(abs‘𝑁)) → 𝑘 ∈ ℕ)
99 ffvelrn 6247 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
10097, 98, 99syl2an 492 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
101100zcnd 11312 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
102 simpll2 1093 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → 𝐵 ∈ ℤ)
103 eqid 2606 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
104103lgsfcl3 24757 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
105102, 93, 94, 104syl3anc 1317 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ)
106 ffvelrn 6247 . . . . . . 7 (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)):ℕ⟶ℤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
107105, 98, 106syl2an 492 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℤ)
108107zcnd 11312 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) ∈ ℂ)
10992adantr 479 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
110102adantr 479 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝐵 ∈ ℤ)
111 simpr 475 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
112 lgsdirprm 24770 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑘 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑘) = ((𝐴 /L 𝑘) · (𝐵 /L 𝑘)))
113109, 110, 111, 112syl3anc 1317 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑘) = ((𝐴 /L 𝑘) · (𝐵 /L 𝑘)))
114113oveq1d 6539 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘) · (𝐵 /L 𝑘))↑(𝑘 pCnt 𝑁)))
115 prmz 15170 . . . . . . . . . . . . 13 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
116 lgscl 24750 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
11792, 115, 116syl2an 492 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
118117zcnd 11312 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
119 lgscl 24750 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐵 /L 𝑘) ∈ ℤ)
120102, 115, 119syl2an 492 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐵 /L 𝑘) ∈ ℤ)
121120zcnd 11312 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝐵 /L 𝑘) ∈ ℂ)
12293adantr 479 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑁 ∈ ℤ)
12394adantr 479 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → 𝑁 ≠ 0)
124 pczcl 15334 . . . . . . . . . . . 12 ((𝑘 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑘 pCnt 𝑁) ∈ ℕ0)
125111, 122, 123, 124syl12anc 1315 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑁) ∈ ℕ0)
126118, 121, 125mulexpd 12837 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 /L 𝑘) · (𝐵 /L 𝑘))↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
127114, 126eqtrd 2640 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
128 iftrue 4038 . . . . . . . . . 10 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)))
129128adantl 480 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)))
130 iftrue 4038 . . . . . . . . . . 11 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
131 iftrue 4038 . . . . . . . . . . 11 (𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)))
132130, 131oveq12d 6542 . . . . . . . . . 10 (𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
133132adantl 480 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) · ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁))))
134127, 129, 1333eqtr4d 2650 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
135 1t1e1 11019 . . . . . . . . . . 11 (1 · 1) = 1
136135eqcomi 2615 . . . . . . . . . 10 1 = (1 · 1)
137 iffalse 4041 . . . . . . . . . 10 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
138 iffalse 4041 . . . . . . . . . . 11 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
139 iffalse 4041 . . . . . . . . . . 11 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = 1)
140138, 139oveq12d 6542 . . . . . . . . . 10 𝑘 ∈ ℙ → (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)) = (1 · 1))
141136, 137, 1403eqtr4a 2666 . . . . . . . . 9 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
142141adantl 480 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ ¬ 𝑘 ∈ ℙ) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
143134, 142pm2.61dan 827 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
144143adantr 479 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
14598adantl 480 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → 𝑘 ∈ ℕ)
146 eleq1 2672 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
147 oveq2 6532 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐴 · 𝐵) /L 𝑛) = ((𝐴 · 𝐵) /L 𝑘))
148 oveq1 6531 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 pCnt 𝑁) = (𝑘 pCnt 𝑁))
149147, 148oveq12d 6542 . . . . . . . . 9 (𝑛 = 𝑘 → (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)) = (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)))
150146, 149ifbieq1d 4055 . . . . . . . 8 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
151 eqid 2606 . . . . . . . 8 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
152 ovex 6552 . . . . . . . . 9 (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
153 1ex 9888 . . . . . . . . 9 1 ∈ V
154152, 153ifex 4102 . . . . . . . 8 if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
155150, 151, 154fvmpt 6173 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
156145, 155syl 17 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
157 oveq2 6532 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
158157, 148oveq12d 6542 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)))
159146, 158ifbieq1d 4055 . . . . . . . . 9 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
160 ovex 6552 . . . . . . . . . 10 ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
161160, 153ifex 4102 . . . . . . . . 9 if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
162159, 95, 161fvmpt 6173 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
163145, 162syl 17 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
164 oveq2 6532 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐵 /L 𝑛) = (𝐵 /L 𝑘))
165164, 148oveq12d 6542 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)))
166146, 165ifbieq1d 4055 . . . . . . . . 9 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
167 ovex 6552 . . . . . . . . . 10 ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)) ∈ V
168167, 153ifex 4102 . . . . . . . . 9 if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) ∈ V
169166, 103, 168fvmpt 6173 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
170145, 169syl 17 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1))
171163, 170oveq12d 6542 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)) = (if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1) · if(𝑘 ∈ ℙ, ((𝐵 /L 𝑘)↑(𝑘 pCnt 𝑁)), 1)))
172144, 156, 1713eqtr4d 2650 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ (1...(abs‘𝑁))) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) = (((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘) · ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))‘𝑘)))
17382, 84, 86, 91, 101, 108, 172seqcaopr 12652 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) = ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17480, 173oveq12d 6542 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
17530adantr 479 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐴 · 𝐵) ∈ ℤ)
176151lgsval4 24756 . . . 4 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
177175, 93, 94, 176syl3anc 1317 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = (if((𝑁 < 0 ∧ (𝐴 · 𝐵) < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 · 𝐵) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17895lgsval4 24756 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
17992, 93, 94, 178syl3anc 1317 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
180103lgsval4 24756 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐵 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
181102, 93, 94, 180syl3anc 1317 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (𝐵 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))))
182179, 181oveq12d 6542 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) · (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
183 neg1cn 10968 . . . . . . 7 -1 ∈ ℂ
184183, 1keepel 4101 . . . . . 6 if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ
185184a1i 11 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) ∈ ℂ)
186 mulcl 9873 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
187186adantl 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
18891, 101, 187seqcl 12635 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
189183, 1keepel 4101 . . . . . 6 if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) ∈ ℂ
190189a1i 11 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) ∈ ℂ)
19191, 108, 187seqcl 12635 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) ∈ ℂ)
192185, 188, 190, 191mul4d 10096 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁))) · (if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
193182, 192eqtrd 2640 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · if((𝑁 < 0 ∧ 𝐵 < 0), -1, 1)) · ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐵 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘(abs‘𝑁)))))
194174, 177, 1933eqtr4d 2650 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ 𝑁 ≠ 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
19578, 194pm2.61dane 2865 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2776  ifcif 4032   class class class wbr 4574  cmpt 4634  wf 5783  cfv 5787  (class class class)co 6524  cc 9787  cr 9788  0cc0 9789  1c1 9790   · cmul 9794   < clt 9927  cle 9928  -cneg 10115  cn 10864  2c2 10914  0cn0 11136  cz 11207  cuz 11516  ...cfz 12149  seqcseq 12615  cexp 12674  abscabs 13765  cdvds 14764  cprime 15166   pCnt cpc 15322   /L clgs 24733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-2o 7422  df-oadd 7425  df-er 7603  df-map 7720  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-sup 8205  df-inf 8206  df-card 8622  df-cda 8847  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-uz 11517  df-q 11618  df-rp 11662  df-fz 12150  df-fzo 12287  df-fl 12407  df-mod 12483  df-seq 12616  df-exp 12675  df-hash 12932  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-dvds 14765  df-gcd 14998  df-prm 15167  df-phi 15252  df-pc 15323  df-lgs 24734
This theorem is referenced by:  lgssq  24776  lgsmulsqcoprm  24782  lgsdirnn0  24783  lgsquad2lem1  24823
  Copyright terms: Public domain W3C validator