MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrlem3 Structured version   Visualization version   GIF version

Theorem lgsqrlem3 25067
Description: Lemma for lgsqr 25070. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
lgsqr.y 𝑌 = (ℤ/nℤ‘𝑃)
lgsqr.s 𝑆 = (Poly1𝑌)
lgsqr.b 𝐵 = (Base‘𝑆)
lgsqr.d 𝐷 = ( deg1𝑌)
lgsqr.o 𝑂 = (eval1𝑌)
lgsqr.e = (.g‘(mulGrp‘𝑆))
lgsqr.x 𝑋 = (var1𝑌)
lgsqr.m = (-g𝑆)
lgsqr.u 1 = (1r𝑆)
lgsqr.t 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
lgsqr.l 𝐿 = (ℤRHom‘𝑌)
lgsqr.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgsqr.g 𝐺 = (𝑦 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(𝑦↑2)))
lgsqr.3 (𝜑𝐴 ∈ ℤ)
lgsqr.4 (𝜑 → (𝐴 /L 𝑃) = 1)
Assertion
Ref Expression
lgsqrlem3 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
Distinct variable groups:   𝑦,𝑂   𝑦,𝑃   𝜑,𝑦   𝑦,𝑇   𝑦,𝐿   𝑦,𝑌
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐷(𝑦)   𝑆(𝑦)   1 (𝑦)   (𝑦)   𝐺(𝑦)   (𝑦)   𝑋(𝑦)

Proof of Theorem lgsqrlem3
StepHypRef Expression
1 lgsqr.1 . . . . . . . . . 10 (𝜑𝑃 ∈ (ℙ ∖ {2}))
21eldifad 3584 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
3 lgsqr.y . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑃)
43znfld 19903 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑌 ∈ Field)
52, 4syl 17 . . . . . . . 8 (𝜑𝑌 ∈ Field)
6 fldidom 19299 . . . . . . . 8 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
75, 6syl 17 . . . . . . 7 (𝜑𝑌 ∈ IDomn)
8 isidom 19298 . . . . . . . 8 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
98simplbi 476 . . . . . . 7 (𝑌 ∈ IDomn → 𝑌 ∈ CRing)
107, 9syl 17 . . . . . 6 (𝜑𝑌 ∈ CRing)
11 crngring 18552 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
1210, 11syl 17 . . . . 5 (𝜑𝑌 ∈ Ring)
13 lgsqr.l . . . . . 6 𝐿 = (ℤRHom‘𝑌)
1413zrhrhm 19854 . . . . 5 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
1512, 14syl 17 . . . 4 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
16 zringbas 19818 . . . . 5 ℤ = (Base‘ℤring)
17 eqid 2621 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
1816, 17rhmf 18720 . . . 4 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
1915, 18syl 17 . . 3 (𝜑𝐿:ℤ⟶(Base‘𝑌))
20 lgsqr.3 . . 3 (𝜑𝐴 ∈ ℤ)
2119, 20ffvelrnd 6358 . 2 (𝜑 → (𝐿𝐴) ∈ (Base‘𝑌))
22 lgsqr.s . . 3 𝑆 = (Poly1𝑌)
23 lgsqr.b . . 3 𝐵 = (Base‘𝑆)
24 lgsqr.d . . 3 𝐷 = ( deg1𝑌)
25 lgsqr.o . . 3 𝑂 = (eval1𝑌)
26 lgsqr.e . . 3 = (.g‘(mulGrp‘𝑆))
27 lgsqr.x . . 3 𝑋 = (var1𝑌)
28 lgsqr.m . . 3 = (-g𝑆)
29 lgsqr.u . . 3 1 = (1r𝑆)
30 lgsqr.t . . 3 𝑇 = ((((𝑃 − 1) / 2) 𝑋) 1 )
31 lgsvalmod 25035 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
3220, 1, 31syl2anc 693 . . . 4 (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
33 lgsqr.4 . . . . 5 (𝜑 → (𝐴 /L 𝑃) = 1)
3433oveq1d 6662 . . . 4 (𝜑 → ((𝐴 /L 𝑃) mod 𝑃) = (1 mod 𝑃))
3532, 34eqtr3d 2657 . . 3 (𝜑 → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (1 mod 𝑃))
363, 22, 23, 24, 25, 26, 27, 28, 29, 30, 13, 1, 20, 35lgsqrlem1 25065 . 2 (𝜑 → ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))
37 eqid 2621 . . . . 5 (𝑌s (Base‘𝑌)) = (𝑌s (Base‘𝑌))
38 eqid 2621 . . . . 5 (Base‘(𝑌s (Base‘𝑌))) = (Base‘(𝑌s (Base‘𝑌)))
39 fvexd 6201 . . . . 5 (𝜑 → (Base‘𝑌) ∈ V)
4025, 22, 37, 17evl1rhm 19690 . . . . . . . 8 (𝑌 ∈ CRing → 𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
4110, 40syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))))
4223, 38rhmf 18720 . . . . . . 7 (𝑂 ∈ (𝑆 RingHom (𝑌s (Base‘𝑌))) → 𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
4341, 42syl 17 . . . . . 6 (𝜑𝑂:𝐵⟶(Base‘(𝑌s (Base‘𝑌))))
4422ply1ring 19612 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝑆 ∈ Ring)
4512, 44syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
46 ringgrp 18546 . . . . . . . . 9 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
4745, 46syl 17 . . . . . . . 8 (𝜑𝑆 ∈ Grp)
48 eqid 2621 . . . . . . . . . . 11 (mulGrp‘𝑆) = (mulGrp‘𝑆)
4948ringmgp 18547 . . . . . . . . . 10 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
5045, 49syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
51 oddprm 15509 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
521, 51syl 17 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
5352nnnn0d 11348 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
5427, 22, 23vr1cl 19581 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝑋𝐵)
5512, 54syl 17 . . . . . . . . 9 (𝜑𝑋𝐵)
5648, 23mgpbas 18489 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑆))
5756, 26mulgnn0cl 17552 . . . . . . . . 9 (((mulGrp‘𝑆) ∈ Mnd ∧ ((𝑃 − 1) / 2) ∈ ℕ0𝑋𝐵) → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
5850, 53, 55, 57syl3anc 1325 . . . . . . . 8 (𝜑 → (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵)
5923, 29ringidcl 18562 . . . . . . . . 9 (𝑆 ∈ Ring → 1𝐵)
6045, 59syl 17 . . . . . . . 8 (𝜑1𝐵)
6123, 28grpsubcl 17489 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (((𝑃 − 1) / 2) 𝑋) ∈ 𝐵1𝐵) → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
6247, 58, 60, 61syl3anc 1325 . . . . . . 7 (𝜑 → ((((𝑃 − 1) / 2) 𝑋) 1 ) ∈ 𝐵)
6330, 62syl5eqel 2704 . . . . . 6 (𝜑𝑇𝐵)
6443, 63ffvelrnd 6358 . . . . 5 (𝜑 → (𝑂𝑇) ∈ (Base‘(𝑌s (Base‘𝑌))))
6537, 17, 38, 5, 39, 64pwselbas 16143 . . . 4 (𝜑 → (𝑂𝑇):(Base‘𝑌)⟶(Base‘𝑌))
66 ffn 6043 . . . 4 ((𝑂𝑇):(Base‘𝑌)⟶(Base‘𝑌) → (𝑂𝑇) Fn (Base‘𝑌))
6765, 66syl 17 . . 3 (𝜑 → (𝑂𝑇) Fn (Base‘𝑌))
68 fniniseg 6336 . . 3 ((𝑂𝑇) Fn (Base‘𝑌) → ((𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿𝐴) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))))
6967, 68syl 17 . 2 (𝜑 → ((𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}) ↔ ((𝐿𝐴) ∈ (Base‘𝑌) ∧ ((𝑂𝑇)‘(𝐿𝐴)) = (0g𝑌))))
7021, 36, 69mpbir2and 957 1 (𝜑 → (𝐿𝐴) ∈ ((𝑂𝑇) “ {(0g𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1482  wcel 1989  Vcvv 3198  cdif 3569  {csn 4175  cmpt 4727  ccnv 5111  cima 5115   Fn wfn 5881  wf 5882  cfv 5886  (class class class)co 6647  1c1 9934  cmin 10263   / cdiv 10681  cn 11017  2c2 11067  0cn0 11289  cz 11374  ...cfz 12323   mod cmo 12663  cexp 12855  cprime 15379  Basecbs 15851  0gc0g 16094  s cpws 16101  Mndcmnd 17288  Grpcgrp 17416  -gcsg 17418  .gcmg 17534  mulGrpcmgp 18483  1rcur 18495  Ringcrg 18541  CRingccrg 18542   RingHom crh 18706  Fieldcfield 18742  Domncdomn 19274  IDomncidom 19275  var1cv1 19540  Poly1cpl1 19541  eval1ce1 19673  ringzring 19812  ℤRHomczrh 19842  ℤ/nczn 19845   deg1 cdg1 23808   /L clgs 25013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011  ax-addf 10012  ax-mulf 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-ofr 6895  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-tpos 7349  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-2o 7558  df-oadd 7561  df-er 7739  df-ec 7741  df-qs 7745  df-map 7856  df-pm 7857  df-ixp 7906  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-sup 8345  df-inf 8346  df-oi 8412  df-card 8762  df-cda 8987  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-xnn0 11361  df-z 11375  df-dec 11491  df-uz 11685  df-q 11786  df-rp 11830  df-fz 12324  df-fzo 12462  df-fl 12588  df-mod 12664  df-seq 12797  df-exp 12856  df-hash 13113  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-dvds 14978  df-gcd 15211  df-prm 15380  df-phi 15465  df-pc 15536  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-starv 15950  df-sca 15951  df-vsca 15952  df-ip 15953  df-tset 15954  df-ple 15955  df-ds 15958  df-unif 15959  df-hom 15960  df-cco 15961  df-0g 16096  df-gsum 16097  df-prds 16102  df-pws 16104  df-imas 16162  df-qus 16163  df-mre 16240  df-mrc 16241  df-acs 16243  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-mhm 17329  df-submnd 17330  df-grp 17419  df-minusg 17420  df-sbg 17421  df-mulg 17535  df-subg 17585  df-nsg 17586  df-eqg 17587  df-ghm 17652  df-cntz 17744  df-cmn 18189  df-abl 18190  df-mgp 18484  df-ur 18496  df-srg 18500  df-ring 18543  df-cring 18544  df-oppr 18617  df-dvdsr 18635  df-unit 18636  df-invr 18666  df-dvr 18677  df-rnghom 18709  df-drng 18743  df-field 18744  df-subrg 18772  df-lmod 18859  df-lss 18927  df-lsp 18966  df-sra 19166  df-rgmod 19167  df-lidl 19168  df-rsp 19169  df-2idl 19226  df-nzr 19252  df-rlreg 19277  df-domn 19278  df-idom 19279  df-assa 19306  df-asp 19307  df-ascl 19308  df-psr 19350  df-mvr 19351  df-mpl 19352  df-opsr 19354  df-evls 19500  df-evl 19501  df-psr1 19544  df-vr1 19545  df-ply1 19546  df-evl1 19675  df-cnfld 19741  df-zring 19813  df-zrh 19846  df-zn 19849  df-lgs 25014
This theorem is referenced by:  lgsqrlem4  25068
  Copyright terms: Public domain W3C validator