MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcaddlem Structured version   Visualization version   GIF version

Theorem pcaddlem 15535
Description: Lemma for pcadd 15536. The original numbers 𝐴 and 𝐵 have been decomposed using the prime count function as (𝑃𝑀) · (𝑅 / 𝑆) where 𝑅, 𝑆 are both not divisible by 𝑃 and 𝑀 = (𝑃 pCnt 𝐴), and similarly for 𝐵. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
pcaddlem.1 (𝜑𝑃 ∈ ℙ)
pcaddlem.2 (𝜑𝐴 = ((𝑃𝑀) · (𝑅 / 𝑆)))
pcaddlem.3 (𝜑𝐵 = ((𝑃𝑁) · (𝑇 / 𝑈)))
pcaddlem.4 (𝜑𝑁 ∈ (ℤ𝑀))
pcaddlem.5 (𝜑 → (𝑅 ∈ ℤ ∧ ¬ 𝑃𝑅))
pcaddlem.6 (𝜑 → (𝑆 ∈ ℕ ∧ ¬ 𝑃𝑆))
pcaddlem.7 (𝜑 → (𝑇 ∈ ℤ ∧ ¬ 𝑃𝑇))
pcaddlem.8 (𝜑 → (𝑈 ∈ ℕ ∧ ¬ 𝑃𝑈))
Assertion
Ref Expression
pcaddlem (𝜑𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵)))

Proof of Theorem pcaddlem
StepHypRef Expression
1 oveq2 6623 . . 3 ((𝐴 + 𝐵) = 0 → (𝑃 pCnt (𝐴 + 𝐵)) = (𝑃 pCnt 0))
21breq2d 4635 . 2 ((𝐴 + 𝐵) = 0 → (𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵)) ↔ 𝑀 ≤ (𝑃 pCnt 0)))
3 pcaddlem.4 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 11652 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
65zred 11442 . . . . 5 (𝜑𝑀 ∈ ℝ)
76adantr 481 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → 𝑀 ∈ ℝ)
8 pcaddlem.1 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℙ)
9 prmnn 15331 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
108, 9syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
1110nncnd 10996 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℂ)
1210nnne0d 11025 . . . . . . . . . . . 12 (𝜑𝑃 ≠ 0)
13 eluzelz 11657 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
143, 13syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
1514, 5zsubcld 11447 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑀) ∈ ℤ)
1611, 12, 15expclzd 12969 . . . . . . . . . . 11 (𝜑 → (𝑃↑(𝑁𝑀)) ∈ ℂ)
17 pcaddlem.7 . . . . . . . . . . . . 13 (𝜑 → (𝑇 ∈ ℤ ∧ ¬ 𝑃𝑇))
1817simpld 475 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℤ)
1918zcnd 11443 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
20 pcaddlem.8 . . . . . . . . . . . . 13 (𝜑 → (𝑈 ∈ ℕ ∧ ¬ 𝑃𝑈))
2120simpld 475 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℕ)
2221nncnd 10996 . . . . . . . . . . 11 (𝜑𝑈 ∈ ℂ)
2321nnne0d 11025 . . . . . . . . . . 11 (𝜑𝑈 ≠ 0)
2416, 19, 22, 23divassd 10796 . . . . . . . . . 10 (𝜑 → (((𝑃↑(𝑁𝑀)) · 𝑇) / 𝑈) = ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))
2524oveq2d 6631 . . . . . . . . 9 (𝜑 → ((𝑅 / 𝑆) + (((𝑃↑(𝑁𝑀)) · 𝑇) / 𝑈)) = ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))
26 pcaddlem.5 . . . . . . . . . . . 12 (𝜑 → (𝑅 ∈ ℤ ∧ ¬ 𝑃𝑅))
2726simpld 475 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℤ)
2827zcnd 11443 . . . . . . . . . 10 (𝜑𝑅 ∈ ℂ)
29 pcaddlem.6 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∈ ℕ ∧ ¬ 𝑃𝑆))
3029simpld 475 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℕ)
3130nncnd 10996 . . . . . . . . . 10 (𝜑𝑆 ∈ ℂ)
3216, 19mulcld 10020 . . . . . . . . . 10 (𝜑 → ((𝑃↑(𝑁𝑀)) · 𝑇) ∈ ℂ)
3330nnne0d 11025 . . . . . . . . . 10 (𝜑𝑆 ≠ 0)
3428, 31, 32, 22, 33, 23divadddivd 10805 . . . . . . . . 9 (𝜑 → ((𝑅 / 𝑆) + (((𝑃↑(𝑁𝑀)) · 𝑇) / 𝑈)) = (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)))
3525, 34eqtr3d 2657 . . . . . . . 8 (𝜑 → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) = (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)))
3635oveq2d 6631 . . . . . . 7 (𝜑 → (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (𝑃 pCnt (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈))))
3736adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (𝑃 pCnt (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈))))
388adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → 𝑃 ∈ ℙ)
3921nnzd 11441 . . . . . . . . . 10 (𝜑𝑈 ∈ ℤ)
4027, 39zmulcld 11448 . . . . . . . . 9 (𝜑 → (𝑅 · 𝑈) ∈ ℤ)
41 uznn0sub 11679 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
423, 41syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝑀) ∈ ℕ0)
4310, 42nnexpcld 12986 . . . . . . . . . . . 12 (𝜑 → (𝑃↑(𝑁𝑀)) ∈ ℕ)
4443nnzd 11441 . . . . . . . . . . 11 (𝜑 → (𝑃↑(𝑁𝑀)) ∈ ℤ)
4544, 18zmulcld 11448 . . . . . . . . . 10 (𝜑 → ((𝑃↑(𝑁𝑀)) · 𝑇) ∈ ℤ)
4630nnzd 11441 . . . . . . . . . 10 (𝜑𝑆 ∈ ℤ)
4745, 46zmulcld 11448 . . . . . . . . 9 (𝜑 → (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆) ∈ ℤ)
4840, 47zaddcld 11446 . . . . . . . 8 (𝜑 → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ∈ ℤ)
4948adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ∈ ℤ)
5011, 12, 5expclzd 12969 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑀) ∈ ℂ)
5150mul01d 10195 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑀) · 0) = 0)
52 oveq2 6623 . . . . . . . . . . . . 13 (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) = 0 → ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = ((𝑃𝑀) · 0))
5352eqeq1d 2623 . . . . . . . . . . . 12 (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) = 0 → (((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = 0 ↔ ((𝑃𝑀) · 0) = 0))
5451, 53syl5ibrcom 237 . . . . . . . . . . 11 (𝜑 → (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) = 0 → ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = 0))
5554necon3d 2811 . . . . . . . . . 10 (𝜑 → (((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) ≠ 0 → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0))
5628, 31, 33divcld 10761 . . . . . . . . . . . . 13 (𝜑 → (𝑅 / 𝑆) ∈ ℂ)
5719, 22, 23divcld 10761 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 / 𝑈) ∈ ℂ)
5816, 57mulcld 10020 . . . . . . . . . . . . 13 (𝜑 → ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)) ∈ ℂ)
5950, 56, 58adddid 10024 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (((𝑃𝑀) · (𝑅 / 𝑆)) + ((𝑃𝑀) · ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))))
60 pcaddlem.2 . . . . . . . . . . . . 13 (𝜑𝐴 = ((𝑃𝑀) · (𝑅 / 𝑆)))
61 pcaddlem.3 . . . . . . . . . . . . . 14 (𝜑𝐵 = ((𝑃𝑁) · (𝑇 / 𝑈)))
625zcnd 11443 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℂ)
6314zcnd 11443 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℂ)
6462, 63pncan3d 10355 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + (𝑁𝑀)) = 𝑁)
6564oveq2d 6631 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑(𝑀 + (𝑁𝑀))) = (𝑃𝑁))
66 expaddz 12860 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ)) → (𝑃↑(𝑀 + (𝑁𝑀))) = ((𝑃𝑀) · (𝑃↑(𝑁𝑀))))
6711, 12, 5, 15, 66syl22anc 1324 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑(𝑀 + (𝑁𝑀))) = ((𝑃𝑀) · (𝑃↑(𝑁𝑀))))
6865, 67eqtr3d 2657 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃𝑁) = ((𝑃𝑀) · (𝑃↑(𝑁𝑀))))
6968oveq1d 6630 . . . . . . . . . . . . . 14 (𝜑 → ((𝑃𝑁) · (𝑇 / 𝑈)) = (((𝑃𝑀) · (𝑃↑(𝑁𝑀))) · (𝑇 / 𝑈)))
7050, 16, 57mulassd 10023 . . . . . . . . . . . . . 14 (𝜑 → (((𝑃𝑀) · (𝑃↑(𝑁𝑀))) · (𝑇 / 𝑈)) = ((𝑃𝑀) · ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))
7161, 69, 703eqtrd 2659 . . . . . . . . . . . . 13 (𝜑𝐵 = ((𝑃𝑀) · ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))
7260, 71oveq12d 6633 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) = (((𝑃𝑀) · (𝑅 / 𝑆)) + ((𝑃𝑀) · ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))))
7359, 72eqtr4d 2658 . . . . . . . . . . 11 (𝜑 → ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (𝐴 + 𝐵))
7473neeq1d 2849 . . . . . . . . . 10 (𝜑 → (((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) ≠ 0 ↔ (𝐴 + 𝐵) ≠ 0))
7535neeq1d 2849 . . . . . . . . . 10 (𝜑 → (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0 ↔ (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) ≠ 0))
7655, 74, 753imtr3d 282 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) ≠ 0 → (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) ≠ 0))
7730, 21nnmulcld 11028 . . . . . . . . . . . . 13 (𝜑 → (𝑆 · 𝑈) ∈ ℕ)
7877nncnd 10996 . . . . . . . . . . . 12 (𝜑 → (𝑆 · 𝑈) ∈ ℂ)
7977nnne0d 11025 . . . . . . . . . . . 12 (𝜑 → (𝑆 · 𝑈) ≠ 0)
8078, 79div0d 10760 . . . . . . . . . . 11 (𝜑 → (0 / (𝑆 · 𝑈)) = 0)
81 oveq1 6622 . . . . . . . . . . . 12 (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) = 0 → (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) = (0 / (𝑆 · 𝑈)))
8281eqeq1d 2623 . . . . . . . . . . 11 (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) = 0 → ((((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) = 0 ↔ (0 / (𝑆 · 𝑈)) = 0))
8380, 82syl5ibrcom 237 . . . . . . . . . 10 (𝜑 → (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) = 0 → (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) = 0))
8483necon3d 2811 . . . . . . . . 9 (𝜑 → ((((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) ≠ 0 → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0))
8576, 84syld 47 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) ≠ 0 → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0))
8685imp 445 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0)
8777adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑆 · 𝑈) ∈ ℕ)
88 pcdiv 15500 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ∈ ℤ ∧ ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0) ∧ (𝑆 · 𝑈) ∈ ℕ) → (𝑃 pCnt (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈))) = ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))))
8938, 49, 86, 87, 88syl121anc 1328 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈))) = ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))))
90 pcmul 15499 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑆 ∈ ℤ ∧ 𝑆 ≠ 0) ∧ (𝑈 ∈ ℤ ∧ 𝑈 ≠ 0)) → (𝑃 pCnt (𝑆 · 𝑈)) = ((𝑃 pCnt 𝑆) + (𝑃 pCnt 𝑈)))
918, 46, 33, 39, 23, 90syl122anc 1332 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (𝑆 · 𝑈)) = ((𝑃 pCnt 𝑆) + (𝑃 pCnt 𝑈)))
9229simprd 479 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑃𝑆)
93 pceq0 15518 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑆 ∈ ℕ) → ((𝑃 pCnt 𝑆) = 0 ↔ ¬ 𝑃𝑆))
948, 30, 93syl2anc 692 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 pCnt 𝑆) = 0 ↔ ¬ 𝑃𝑆))
9592, 94mpbird 247 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝑆) = 0)
9620simprd 479 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑃𝑈)
97 pceq0 15518 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑈 ∈ ℕ) → ((𝑃 pCnt 𝑈) = 0 ↔ ¬ 𝑃𝑈))
988, 21, 97syl2anc 692 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 pCnt 𝑈) = 0 ↔ ¬ 𝑃𝑈))
9996, 98mpbird 247 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝑈) = 0)
10095, 99oveq12d 6633 . . . . . . . . . . 11 (𝜑 → ((𝑃 pCnt 𝑆) + (𝑃 pCnt 𝑈)) = (0 + 0))
101 00id 10171 . . . . . . . . . . 11 (0 + 0) = 0
102100, 101syl6eq 2671 . . . . . . . . . 10 (𝜑 → ((𝑃 pCnt 𝑆) + (𝑃 pCnt 𝑈)) = 0)
10391, 102eqtrd 2655 . . . . . . . . 9 (𝜑 → (𝑃 pCnt (𝑆 · 𝑈)) = 0)
104103oveq2d 6631 . . . . . . . 8 (𝜑 → ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))) = ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − 0))
105104adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))) = ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − 0))
106 pczcl 15496 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ∈ ℤ ∧ ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0)) → (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) ∈ ℕ0)
10738, 49, 86, 106syl12anc 1321 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) ∈ ℕ0)
108107nn0cnd 11313 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) ∈ ℂ)
109108subid1d 10341 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − 0) = (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))))
110105, 109eqtrd 2655 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))) = (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))))
11137, 89, 1103eqtrd 2659 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))))
112111, 107eqeltrd 2698 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) ∈ ℕ0)
113 nn0addge1 11299 . . . 4 ((𝑀 ∈ ℝ ∧ (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) ∈ ℕ0) → 𝑀 ≤ (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
1147, 112, 113syl2anc 692 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → 𝑀 ≤ (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
115 nnq 11761 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
11610, 115syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℚ)
117 qexpclz 12837 . . . . . . 7 ((𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑃𝑀) ∈ ℚ)
118116, 12, 5, 117syl3anc 1323 . . . . . 6 (𝜑 → (𝑃𝑀) ∈ ℚ)
119118adantr 481 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃𝑀) ∈ ℚ)
12011, 12, 5expne0d 12970 . . . . . 6 (𝜑 → (𝑃𝑀) ≠ 0)
121120adantr 481 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃𝑀) ≠ 0)
122 znq 11752 . . . . . . . 8 ((𝑅 ∈ ℤ ∧ 𝑆 ∈ ℕ) → (𝑅 / 𝑆) ∈ ℚ)
12327, 30, 122syl2anc 692 . . . . . . 7 (𝜑 → (𝑅 / 𝑆) ∈ ℚ)
124 qexpclz 12837 . . . . . . . . 9 ((𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ∧ (𝑁𝑀) ∈ ℤ) → (𝑃↑(𝑁𝑀)) ∈ ℚ)
125116, 12, 15, 124syl3anc 1323 . . . . . . . 8 (𝜑 → (𝑃↑(𝑁𝑀)) ∈ ℚ)
126 znq 11752 . . . . . . . . 9 ((𝑇 ∈ ℤ ∧ 𝑈 ∈ ℕ) → (𝑇 / 𝑈) ∈ ℚ)
12718, 21, 126syl2anc 692 . . . . . . . 8 (𝜑 → (𝑇 / 𝑈) ∈ ℚ)
128 qmulcl 11766 . . . . . . . 8 (((𝑃↑(𝑁𝑀)) ∈ ℚ ∧ (𝑇 / 𝑈) ∈ ℚ) → ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)) ∈ ℚ)
129125, 127, 128syl2anc 692 . . . . . . 7 (𝜑 → ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)) ∈ ℚ)
130 qaddcl 11764 . . . . . . 7 (((𝑅 / 𝑆) ∈ ℚ ∧ ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)) ∈ ℚ) → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ∈ ℚ)
131123, 129, 130syl2anc 692 . . . . . 6 (𝜑 → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ∈ ℚ)
132131adantr 481 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ∈ ℚ)
13374, 55sylbird 250 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) ≠ 0 → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0))
134133imp 445 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0)
135 pcqmul 15501 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝑃𝑀) ∈ ℚ ∧ (𝑃𝑀) ≠ 0) ∧ (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ∈ ℚ ∧ ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0)) → (𝑃 pCnt ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = ((𝑃 pCnt (𝑃𝑀)) + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
13638, 119, 121, 132, 134, 135syl122anc 1332 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = ((𝑃 pCnt (𝑃𝑀)) + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
13773oveq2d 6631 . . . . 5 (𝜑 → (𝑃 pCnt ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = (𝑃 pCnt (𝐴 + 𝐵)))
138137adantr 481 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = (𝑃 pCnt (𝐴 + 𝐵)))
139 pcid 15520 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ) → (𝑃 pCnt (𝑃𝑀)) = 𝑀)
1408, 5, 139syl2anc 692 . . . . . 6 (𝜑 → (𝑃 pCnt (𝑃𝑀)) = 𝑀)
141140oveq1d 6630 . . . . 5 (𝜑 → ((𝑃 pCnt (𝑃𝑀)) + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
142141adantr 481 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑃 pCnt (𝑃𝑀)) + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
143136, 138, 1423eqtr3d 2663 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt (𝐴 + 𝐵)) = (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
144114, 143breqtrrd 4651 . 2 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → 𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵)))
1456rexrd 10049 . . . 4 (𝜑𝑀 ∈ ℝ*)
146 pnfge 11924 . . . 4 (𝑀 ∈ ℝ*𝑀 ≤ +∞)
147145, 146syl 17 . . 3 (𝜑𝑀 ≤ +∞)
148 pc0 15502 . . . 4 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
1498, 148syl 17 . . 3 (𝜑 → (𝑃 pCnt 0) = +∞)
150147, 149breqtrrd 4651 . 2 (𝜑𝑀 ≤ (𝑃 pCnt 0))
1512, 144, 150pm2.61ne 2875 1 (𝜑𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4623  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  0cc0 9896   + caddc 9899   · cmul 9901  +∞cpnf 10031  *cxr 10033  cle 10035  cmin 10226   / cdiv 10644  cn 10980  0cn0 11252  cz 11337  cuz 11647  cq 11748  cexp 12816  cdvds 14926  cprime 15328   pCnt cpc 15484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-dvds 14927  df-gcd 15160  df-prm 15329  df-pc 15485
This theorem is referenced by:  pcadd  15536
  Copyright terms: Public domain W3C validator