Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrgaplem Structured version   Visualization version   GIF version

Theorem pell1qrgaplem 39490
Description: Lemma for pell1qrgap 39491. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1qrgaplem (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵)))

Proof of Theorem pell1qrgaplem
StepHypRef Expression
1 nnrp 12401 . . . . . 6 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
21ad2antrr 724 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℝ+)
3 1rp 12394 . . . . . 6 1 ∈ ℝ+
43a1i 11 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℝ+)
52, 4rpaddcld 12447 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈ ℝ+)
65rpsqrtcld 14771 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ∈ ℝ+)
76rpred 12432 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ∈ ℝ)
82rpsqrtcld 14771 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℝ+)
98rpred 12432 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℝ)
10 nn0re 11907 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
1110adantr 483 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℝ)
1211ad2antlr 725 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℝ)
13 nn0re 11907 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
1413adantl 484 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℝ)
1514ad2antlr 725 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℝ)
169, 15remulcld 10671 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 𝐵) ∈ ℝ)
172rpred 12432 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℝ)
18 1re 10641 . . . . . . . 8 1 ∈ ℝ
1918a1i 11 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℝ)
2015resqcld 13612 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℝ)
2119, 20resubcld 11068 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ∈ ℝ)
2217, 21remulcld 10671 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ∈ ℝ)
23 0red 10644 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ∈ ℝ)
2417, 23remulcld 10671 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) ∈ ℝ)
2512resqcld 13612 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℝ)
26 sq1 13559 . . . . . . . . 9 (1↑2) = 1
2726a1i 11 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) = 1)
28 nnge1 11666 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 1 ≤ 𝐵)
2928adantl 484 . . . . . . . . . 10 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵)
30 simplrl 775 . . . . . . . . . . . 12 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < (𝐴 + ((√‘𝐷) · 𝐵)))
31 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 = 0 → (𝐵↑2) = (0↑2))
3231adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = (0↑2))
33 sq0 13556 . . . . . . . . . . . . . . . . . . . . 21 (0↑2) = 0
3432, 33syl6eq 2872 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐵↑2) = 0)
3534oveq2d 7172 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = (𝐷 · 0))
362rpcnd 12434 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐷 ∈ ℂ)
3736adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐷 ∈ ℂ)
3837mul01d 10839 . . . . . . . . . . . . . . . . . . 19 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · 0) = 0)
3935, 38eqtrd 2856 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐷 · (𝐵↑2)) = 0)
4039oveq2d 7172 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = ((𝐴↑2) − 0))
41 simplrr 776 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
4212recnd 10669 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐴 ∈ ℂ)
4342sqcld 13509 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) ∈ ℂ)
4443adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) ∈ ℂ)
4544subid1d 10986 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) − 0) = (𝐴↑2))
4640, 41, 453eqtr3d 2864 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 = (𝐴↑2))
4726, 46syl5req 2869 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴↑2) = (1↑2))
48 nn0ge0 11923 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
4948adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 0 ≤ 𝐴)
5049ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐴)
51 0le1 11163 . . . . . . . . . . . . . . . . . 18 0 ≤ 1
5251a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 1)
53 sq11 13497 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5412, 50, 19, 52, 53syl22anc 836 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5554adantr 483 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((𝐴↑2) = (1↑2) ↔ 𝐴 = 1))
5647, 55mpbid 234 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐴 = 1)
57 simpr 487 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 𝐵 = 0)
5857oveq2d 7172 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = ((√‘𝐷) · 0))
598rpcnd 12434 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ∈ ℂ)
6059adantr 483 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (√‘𝐷) ∈ ℂ)
6160mul01d 10839 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 0) = 0)
6258, 61eqtrd 2856 . . . . . . . . . . . . . 14 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → ((√‘𝐷) · 𝐵) = 0)
6356, 62oveq12d 7174 . . . . . . . . . . . . 13 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = (1 + 0))
64 1p0e1 11762 . . . . . . . . . . . . 13 (1 + 0) = 1
6563, 64syl6eq 2872 . . . . . . . . . . . 12 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → (𝐴 + ((√‘𝐷) · 𝐵)) = 1)
6630, 65breqtrd 5092 . . . . . . . . . . 11 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 < 1)
6718ltnri 10749 . . . . . . . . . . 11 ¬ 1 < 1
68 pm2.24 124 . . . . . . . . . . 11 (1 < 1 → (¬ 1 < 1 → 1 ≤ 𝐵))
6966, 67, 68mpisyl 21 . . . . . . . . . 10 ((((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) ∧ 𝐵 = 0) → 1 ≤ 𝐵)
70 simplrr 776 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℕ0)
71 elnn0 11900 . . . . . . . . . . 11 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
7270, 71sylib 220 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵 ∈ ℕ ∨ 𝐵 = 0))
7329, 69, 72mpjaodan 955 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ 𝐵)
74 nn0ge0 11923 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
7574adantl 484 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 0 ≤ 𝐵)
7675ad2antlr 725 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ 𝐵)
7719, 15, 52, 76le2sqd 13621 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ (1↑2) ≤ (𝐵↑2)))
7873, 77mpbid 234 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1↑2) ≤ (𝐵↑2))
7927, 78eqbrtrrd 5090 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ≤ (𝐵↑2))
8019, 20suble0d 11231 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ 1 ≤ (𝐵↑2)))
8179, 80mpbird 259 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 − (𝐵↑2)) ≤ 0)
8221, 23, 2lemul2d 12476 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((1 − (𝐵↑2)) ≤ 0 ↔ (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0)))
8381, 82mpbid 234 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) ≤ (𝐷 · 0))
8422, 24, 25, 83leadd2dd 11255 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))) ≤ ((𝐴↑2) + (𝐷 · 0)))
855rpcnd 12434 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) ∈ ℂ)
8685sqsqrtd 14799 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) = (𝐷 + 1))
87 simprr 771 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)
8887eqcomd 2827 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
8988oveq2d 7172 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + 1) = (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))))
9015recnd 10669 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 𝐵 ∈ ℂ)
9190sqcld 13509 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐵↑2) ∈ ℂ)
9236, 91mulcld 10661 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (𝐵↑2)) ∈ ℂ)
9336, 43, 92addsub12d 11020 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2)))))
9419recnd 10669 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 1 ∈ ℂ)
9536, 94, 91subdid 11096 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · (1 − (𝐵↑2))) = ((𝐷 · 1) − (𝐷 · (𝐵↑2))))
9636mulid1d 10658 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 1) = 𝐷)
9796oveq1d 7171 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐷 · 1) − (𝐷 · (𝐵↑2))) = (𝐷 − (𝐷 · (𝐵↑2))))
9895, 97eqtr2d 2857 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 − (𝐷 · (𝐵↑2))) = (𝐷 · (1 − (𝐵↑2))))
9998oveq2d 7172 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10093, 99eqtrd 2856 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 + ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10186, 89, 1003eqtrd 2860 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) = ((𝐴↑2) + (𝐷 · (1 − (𝐵↑2)))))
10236mul01d 10839 . . . . . 6 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐷 · 0) = 0)
103102oveq2d 7172 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + (𝐷 · 0)) = ((𝐴↑2) + 0))
10443addid1d 10840 . . . . 5 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((𝐴↑2) + 0) = (𝐴↑2))
105103, 104eqtr2d 2857 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (𝐴↑2) = ((𝐴↑2) + (𝐷 · 0)))
10684, 101, 1053brtr4d 5098 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1))↑2) ≤ (𝐴↑2))
1076rpge0d 12436 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → 0 ≤ (√‘(𝐷 + 1)))
1087, 12, 107, 50le2sqd 13621 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) ≤ 𝐴 ↔ ((√‘(𝐷 + 1))↑2) ≤ (𝐴↑2)))
109106, 108mpbird 259 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘(𝐷 + 1)) ≤ 𝐴)
11059mulid1d 10658 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 1) = (√‘𝐷))
11119, 15, 8lemul2d 12476 . . . 4 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (1 ≤ 𝐵 ↔ ((√‘𝐷) · 1) ≤ ((√‘𝐷) · 𝐵)))
11273, 111mpbid 234 . . 3 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘𝐷) · 1) ≤ ((√‘𝐷) · 𝐵))
113110, 112eqbrtrrd 5090 . 2 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → (√‘𝐷) ≤ ((√‘𝐷) · 𝐵))
1147, 9, 12, 16, 109, 113le2addd 11259 1 (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  cn 11638  2c2 11693  0cn0 11898  +crp 12390  cexp 13430  csqrt 14592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595
This theorem is referenced by:  pell1qrgap  39491
  Copyright terms: Public domain W3C validator