Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecfund Structured version   Visualization version   GIF version

Theorem rmspecfund 39499
Description: The base of exponent used to define the X and Y sequences is the fundamental solution of the corresponding Pell equation. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmspecfund (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))

Proof of Theorem rmspecfund
StepHypRef Expression
1 rmspecnonsq 39497 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
2 eluzelz 12247 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
3 zsqcl 13488 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
42, 3syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℤ)
54zred 12081 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
6 1red 10636 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
75, 6resubcld 11062 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ)
8 sq1 13552 . . . . . . . . . . . . 13 (1↑2) = 1
98a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (1↑2) = 1)
10 eluz2b2 12315 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴))
1110simprbi 499 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
12 eluzelre 12248 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
13 0le1 11157 . . . . . . . . . . . . . . 15 0 ≤ 1
1413a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 0 ≤ 1)
15 eluzge2nn0 12281 . . . . . . . . . . . . . . 15 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
1615nn0ge0d 11952 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
176, 12, 14, 16lt2sqd 13613 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2)))
1811, 17mpbid 234 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (1↑2) < (𝐴↑2))
199, 18eqbrtrrd 5083 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴↑2))
206, 5posdifd 11221 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1)))
2119, 20mpbid 234 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < ((𝐴↑2) − 1))
227, 21elrpd 12422 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
2322rpsqrtcld 14765 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ+)
2423rpred 12425 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
2524recnd 10663 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
2625mulid1d 10652 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((√‘((𝐴↑2) − 1)) · 1) = (√‘((𝐴↑2) − 1)))
2726oveq2d 7166 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
28 pell1qrss14 39458 . . . . . 6 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → (Pell1QR‘((𝐴↑2) − 1)) ⊆ (Pell14QR‘((𝐴↑2) − 1)))
291, 28syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → (Pell1QR‘((𝐴↑2) − 1)) ⊆ (Pell14QR‘((𝐴↑2) − 1)))
30 1nn0 11907 . . . . . . 7 1 ∈ ℕ0
3130a1i 11 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℕ0)
328oveq2i 7161 . . . . . . . . 9 (((𝐴↑2) − 1) · (1↑2)) = (((𝐴↑2) − 1) · 1)
337recnd 10663 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
3433mulid1d 10652 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) · 1) = ((𝐴↑2) − 1))
3532, 34syl5eq 2868 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) · (1↑2)) = ((𝐴↑2) − 1))
3635oveq2d 7166 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = ((𝐴↑2) − ((𝐴↑2) − 1)))
375recnd 10663 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℂ)
38 1cnd 10630 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℂ)
3937, 38nncand 10996 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((𝐴↑2) − 1)) = 1)
4036, 39eqtrd 2856 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = 1)
41 pellqrexplicit 39467 . . . . . 6 (((((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = 1) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell1QR‘((𝐴↑2) − 1)))
421, 15, 31, 40, 41syl31anc 1369 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell1QR‘((𝐴↑2) − 1)))
4329, 42sseldd 3968 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell14QR‘((𝐴↑2) − 1)))
4427, 43eqeltrrd 2914 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ (Pell14QR‘((𝐴↑2) − 1)))
456, 24readdcld 10664 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 + (√‘((𝐴↑2) − 1))) ∈ ℝ)
4612, 24readdcld 10664 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ)
476, 23ltaddrpd 12458 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 < (1 + (√‘((𝐴↑2) − 1))))
486, 12, 24, 11ltadd1dd 11245 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 + (√‘((𝐴↑2) − 1))) < (𝐴 + (√‘((𝐴↑2) − 1))))
496, 45, 46, 47, 48lttrd 10795 . . 3 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴 + (√‘((𝐴↑2) − 1))))
50 pellfundlb 39474 . . 3 ((((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ∈ (Pell14QR‘((𝐴↑2) − 1)) ∧ 1 < (𝐴 + (√‘((𝐴↑2) − 1)))) → (PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))))
511, 44, 49, 50syl3anc 1367 . 2 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))))
5237, 38npcand 10995 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) + 1) = (𝐴↑2))
5352fveq2d 6669 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘(((𝐴↑2) − 1) + 1)) = (√‘(𝐴↑2)))
5412, 16sqrtsqd 14773 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘(𝐴↑2)) = 𝐴)
5553, 54eqtrd 2856 . . . 4 (𝐴 ∈ (ℤ‘2) → (√‘(((𝐴↑2) − 1) + 1)) = 𝐴)
5655oveq1d 7165 . . 3 (𝐴 ∈ (ℤ‘2) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) = (𝐴 + (√‘((𝐴↑2) − 1))))
57 pellfundge 39472 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
581, 57syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
5956, 58eqbrtrrd 5083 . 2 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
60 pellfundre 39471 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → (PellFund‘((𝐴↑2) − 1)) ∈ ℝ)
611, 60syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) ∈ ℝ)
6261, 46letri3d 10776 . 2 (𝐴 ∈ (ℤ‘2) → ((PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))) ↔ ((PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))) ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))))
6351, 59, 62mpbir2and 711 1 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cdif 3933  wss 3936   class class class wbr 5059  cfv 6350  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864  cn 11632  2c2 11686  0cn0 11891  cz 11975  cuz 12237  cexp 13423  csqrt 14586  NNcsquarenn 39426  Pell1QRcpell1qr 39427  Pell14QRcpell14qr 39429  PellFundcpellfund 39430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-omul 8101  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-ico 12738  df-fz 12887  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-gcd 15838  df-numer 16069  df-denom 16070  df-squarenn 39431  df-pell1qr 39432  df-pell14qr 39433  df-pell1234qr 39434  df-pellfund 39435
This theorem is referenced by:  rmxyelqirr  39500  rmxycomplete  39507  rmbaserp  39509
  Copyright terms: Public domain W3C validator