Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecfund Structured version   Visualization version   GIF version

Theorem rmspecfund 36951
Description: The base of exponent used to define the X and Y sequences is the fundamental solution of the corresponding Pell equation. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmspecfund (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))

Proof of Theorem rmspecfund
StepHypRef Expression
1 rmspecnonsq 36949 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
2 eluzelz 11641 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
3 zsqcl 12874 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
42, 3syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℤ)
54zred 11426 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
6 1red 9999 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
75, 6resubcld 10402 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ)
8 sq1 12898 . . . . . . . . . . . . 13 (1↑2) = 1
98a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (1↑2) = 1)
10 eluz2b2 11705 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴))
1110simprbi 480 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
12 eluzelre 11642 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
13 0le1 10495 . . . . . . . . . . . . . . 15 0 ≤ 1
1413a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 0 ≤ 1)
15 eluzge2nn0 11671 . . . . . . . . . . . . . . 15 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
1615nn0ge0d 11298 . . . . . . . . . . . . . 14 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
176, 12, 14, 16lt2sqd 12983 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → (1 < 𝐴 ↔ (1↑2) < (𝐴↑2)))
1811, 17mpbid 222 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → (1↑2) < (𝐴↑2))
199, 18eqbrtrrd 4637 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴↑2))
206, 5posdifd 10558 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (1 < (𝐴↑2) ↔ 0 < ((𝐴↑2) − 1)))
2119, 20mpbid 222 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < ((𝐴↑2) − 1))
227, 21elrpd 11813 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
2322rpsqrtcld 14084 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ+)
2423rpred 11816 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℝ)
2524recnd 10012 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
2625mulid1d 10001 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((√‘((𝐴↑2) − 1)) · 1) = (√‘((𝐴↑2) − 1)))
2726oveq2d 6620 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
28 pell1qrss14 36909 . . . . . 6 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → (Pell1QR‘((𝐴↑2) − 1)) ⊆ (Pell14QR‘((𝐴↑2) − 1)))
291, 28syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → (Pell1QR‘((𝐴↑2) − 1)) ⊆ (Pell14QR‘((𝐴↑2) − 1)))
30 1nn0 11252 . . . . . . 7 1 ∈ ℕ0
3130a1i 11 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℕ0)
328oveq2i 6615 . . . . . . . . 9 (((𝐴↑2) − 1) · (1↑2)) = (((𝐴↑2) − 1) · 1)
337recnd 10012 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
3433mulid1d 10001 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) · 1) = ((𝐴↑2) − 1))
3532, 34syl5eq 2667 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) · (1↑2)) = ((𝐴↑2) − 1))
3635oveq2d 6620 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = ((𝐴↑2) − ((𝐴↑2) − 1)))
375recnd 10012 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℂ)
38 1cnd 10000 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℂ)
3937, 38nncand 10341 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((𝐴↑2) − 1)) = 1)
4036, 39eqtrd 2655 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = 1)
41 pellqrexplicit 36918 . . . . . 6 (((((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ ((𝐴↑2) − (((𝐴↑2) − 1) · (1↑2))) = 1) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell1QR‘((𝐴↑2) − 1)))
421, 15, 31, 40, 41syl31anc 1326 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell1QR‘((𝐴↑2) − 1)))
4329, 42sseldd 3584 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + ((√‘((𝐴↑2) − 1)) · 1)) ∈ (Pell14QR‘((𝐴↑2) − 1)))
4427, 43eqeltrrd 2699 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ (Pell14QR‘((𝐴↑2) − 1)))
456, 24readdcld 10013 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 + (√‘((𝐴↑2) − 1))) ∈ ℝ)
4612, 24readdcld 10013 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ∈ ℝ)
476, 23ltaddrpd 11849 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 < (1 + (√‘((𝐴↑2) − 1))))
486, 12, 24, 11ltadd1dd 10582 . . . 4 (𝐴 ∈ (ℤ‘2) → (1 + (√‘((𝐴↑2) − 1))) < (𝐴 + (√‘((𝐴↑2) − 1))))
496, 45, 46, 47, 48lttrd 10142 . . 3 (𝐴 ∈ (ℤ‘2) → 1 < (𝐴 + (√‘((𝐴↑2) − 1))))
50 pellfundlb 36925 . . 3 ((((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ∈ (Pell14QR‘((𝐴↑2) − 1)) ∧ 1 < (𝐴 + (√‘((𝐴↑2) − 1)))) → (PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))))
511, 44, 49, 50syl3anc 1323 . 2 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))))
5237, 38npcand 10340 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (((𝐴↑2) − 1) + 1) = (𝐴↑2))
5352fveq2d 6152 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘(((𝐴↑2) − 1) + 1)) = (√‘(𝐴↑2)))
5412, 16sqrtsqd 14092 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘(𝐴↑2)) = 𝐴)
5553, 54eqtrd 2655 . . . 4 (𝐴 ∈ (ℤ‘2) → (√‘(((𝐴↑2) − 1) + 1)) = 𝐴)
5655oveq1d 6619 . . 3 (𝐴 ∈ (ℤ‘2) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) = (𝐴 + (√‘((𝐴↑2) − 1))))
57 pellfundge 36923 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
581, 57syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((√‘(((𝐴↑2) − 1) + 1)) + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
5956, 58eqbrtrrd 4637 . 2 (𝐴 ∈ (ℤ‘2) → (𝐴 + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))
60 pellfundre 36922 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → (PellFund‘((𝐴↑2) − 1)) ∈ ℝ)
611, 60syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) ∈ ℝ)
6261, 46letri3d 10123 . 2 (𝐴 ∈ (ℤ‘2) → ((PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))) ↔ ((PellFund‘((𝐴↑2) − 1)) ≤ (𝐴 + (√‘((𝐴↑2) − 1))) ∧ (𝐴 + (√‘((𝐴↑2) − 1))) ≤ (PellFund‘((𝐴↑2) − 1)))))
6351, 59, 62mpbir2and 956 1 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  cdif 3552  wss 3555   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210  cn 10964  2c2 11014  0cn0 11236  cz 11321  cuz 11631  cexp 12800  csqrt 13907  NNcsquarenn 36877  Pell1QRcpell1qr 36878  Pell14QRcpell14qr 36880  PellFundcpellfund 36881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-omul 7510  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-acn 8712  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-ico 12123  df-fz 12269  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908  df-gcd 15141  df-numer 15367  df-denom 15368  df-squarenn 36882  df-pell1qr 36883  df-pell14qr 36884  df-pell1234qr 36885  df-pellfund 36886
This theorem is referenced by:  rmxyelqirr  36952  rmxycomplete  36959  rmbaserp  36961
  Copyright terms: Public domain W3C validator