MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trireciplem Structured version   Visualization version   GIF version

Theorem trireciplem 14519
Description: Lemma for trirecip 14520. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Hypothesis
Ref Expression
trireciplem.1 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
Assertion
Ref Expression
trireciplem seq1( + , 𝐹) ⇝ 1

Proof of Theorem trireciplem
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11667 . . . 4 ℕ = (ℤ‘1)
2 1zzd 11352 . . . 4 (⊤ → 1 ∈ ℤ)
3 1cnd 10000 . . . . . 6 (⊤ → 1 ∈ ℂ)
4 divcnv 14510 . . . . . 6 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
53, 4syl 17 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
6 nnex 10970 . . . . . . . 8 ℕ ∈ V
76mptex 6440 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ∈ V
87a1i 11 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ∈ V)
96mptex 6440 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ∈ V
109a1i 11 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ∈ V)
11 peano2nn 10976 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
1211adantl 482 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
13 oveq2 6612 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
14 eqid 2621 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
15 ovex 6632 . . . . . . . . 9 (1 / (𝑘 + 1)) ∈ V
1613, 14, 15fvmpt 6239 . . . . . . . 8 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
1712, 16syl 17 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
18 oveq1 6611 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
1918oveq2d 6620 . . . . . . . . 9 (𝑛 = 𝑘 → (1 / (𝑛 + 1)) = (1 / (𝑘 + 1)))
20 eqid 2621 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))
2119, 20, 15fvmpt 6239 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) = (1 / (𝑘 + 1)))
2221adantl 482 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) = (1 / (𝑘 + 1)))
2317, 22eqtr4d 2658 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘))
241, 2, 2, 8, 10, 23climshft2 14247 . . . . 5 (⊤ → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0))
255, 24mpbird 247 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ⇝ 0)
26 seqex 12743 . . . . 5 seq1( + , 𝐹) ∈ V
2726a1i 11 . . . 4 (⊤ → seq1( + , 𝐹) ∈ V)
2812nnrecred 11010 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ)
2928recnd 10012 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℂ)
3022, 29eqeltrd 2698 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) ∈ ℂ)
3122oveq2d 6620 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)) = (1 − (1 / (𝑘 + 1))))
32 elfznn 12312 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ)
3332adantl 482 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℕ)
3433nncnd 10980 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℂ)
35 peano2cn 10152 . . . . . . . . . 10 (𝑗 ∈ ℂ → (𝑗 + 1) ∈ ℂ)
3634, 35syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) ∈ ℂ)
37 peano2nn 10976 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
3833, 37syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) ∈ ℕ)
3933, 38nnmulcld 11012 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) ∈ ℕ)
4039nncnd 10980 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) ∈ ℂ)
4139nnne0d 11009 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) ≠ 0)
4236, 34, 40, 41divsubdird 10784 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1)))))
43 ax-1cn 9938 . . . . . . . . . 10 1 ∈ ℂ
44 pncan2 10232 . . . . . . . . . 10 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 𝑗) = 1)
4534, 43, 44sylancl 693 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) − 𝑗) = 1)
4645oveq1d 6619 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
4736mulid1d 10001 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) · 1) = (𝑗 + 1))
4836, 34mulcomd 10005 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) · 𝑗) = (𝑗 · (𝑗 + 1)))
4947, 48oveq12d 6622 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) · 1) / ((𝑗 + 1) · 𝑗)) = ((𝑗 + 1) / (𝑗 · (𝑗 + 1))))
50 1cnd 10000 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 1 ∈ ℂ)
5133nnne0d 11009 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ≠ 0)
5238nnne0d 11009 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) ≠ 0)
5350, 34, 36, 51, 52divcan5d 10771 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) · 1) / ((𝑗 + 1) · 𝑗)) = (1 / 𝑗))
5449, 53eqtr3d 2657 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) / (𝑗 · (𝑗 + 1))) = (1 / 𝑗))
5534mulid1d 10001 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · 1) = 𝑗)
5655oveq1d 6619 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (𝑗 / (𝑗 · (𝑗 + 1))))
5750, 36, 34, 52, 51divcan5d 10771 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1)))
5856, 57eqtr3d 2657 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1)))
5954, 58oveq12d 6622 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1)))) = ((1 / 𝑗) − (1 / (𝑗 + 1))))
6042, 46, 593eqtr3d 2663 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (1 / (𝑗 · (𝑗 + 1))) = ((1 / 𝑗) − (1 / (𝑗 + 1))))
6160sumeq2dv 14367 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1))))
62 oveq2 6612 . . . . . . 7 (𝑛 = 𝑗 → (1 / 𝑛) = (1 / 𝑗))
63 oveq2 6612 . . . . . . 7 (𝑛 = (𝑗 + 1) → (1 / 𝑛) = (1 / (𝑗 + 1)))
64 oveq2 6612 . . . . . . . 8 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
65 1div1e1 10661 . . . . . . . 8 (1 / 1) = 1
6664, 65syl6eq 2671 . . . . . . 7 (𝑛 = 1 → (1 / 𝑛) = 1)
67 nnz 11343 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
6867adantl 482 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
6912, 1syl6eleq 2708 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
70 elfznn 12312 . . . . . . . . . 10 (𝑛 ∈ (1...(𝑘 + 1)) → 𝑛 ∈ ℕ)
7170adantl 482 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → 𝑛 ∈ ℕ)
7271nnrecred 11010 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → (1 / 𝑛) ∈ ℝ)
7372recnd 10012 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → (1 / 𝑛) ∈ ℂ)
7462, 63, 66, 13, 68, 69, 73telfsum 14463 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1))) = (1 − (1 / (𝑘 + 1))))
7561, 74eqtrd 2655 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (1 − (1 / (𝑘 + 1))))
76 id 22 . . . . . . . . . 10 (𝑛 = 𝑗𝑛 = 𝑗)
77 oveq1 6611 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛 + 1) = (𝑗 + 1))
7876, 77oveq12d 6622 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1)))
7978oveq2d 6620 . . . . . . . 8 (𝑛 = 𝑗 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
80 trireciplem.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
81 ovex 6632 . . . . . . . 8 (1 / (𝑗 · (𝑗 + 1))) ∈ V
8279, 80, 81fvmpt 6239 . . . . . . 7 (𝑗 ∈ ℕ → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
8333, 82syl 17 . . . . . 6 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
84 simpr 477 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
8584, 1syl6eleq 2708 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
8639nnrecred 11010 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
8786recnd 10012 . . . . . 6 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
8883, 85, 87fsumser 14394 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (seq1( + , 𝐹)‘𝑘))
8931, 75, 883eqtr2rd 2662 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) = (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)))
901, 2, 25, 3, 27, 30, 89climsubc2 14303 . . 3 (⊤ → seq1( + , 𝐹) ⇝ (1 − 0))
9190trud 1490 . 2 seq1( + , 𝐹) ⇝ (1 − 0)
92 1m0e1 11075 . 2 (1 − 0) = 1
9391, 92breqtri 4638 1 seq1( + , 𝐹) ⇝ 1
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wtru 1481  wcel 1987  Vcvv 3186   class class class wbr 4613  cmpt 4673  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  cmin 10210   / cdiv 10628  cn 10964  cz 11321  cuz 11631  ...cfz 12268  seqcseq 12741  cli 14149  Σcsu 14350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154  df-sum 14351
This theorem is referenced by:  trirecip  14520  stirlinglem12  39606
  Copyright terms: Public domain W3C validator