ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2cnne0 Unicode version

Theorem 2cnne0 9141
Description: 2 is a nonzero complex number (common case). (Contributed by David A. Wheeler, 7-Dec-2018.)
Assertion
Ref Expression
2cnne0  |-  ( 2  e.  CC  /\  2  =/=  0 )

Proof of Theorem 2cnne0
StepHypRef Expression
1 2cn 9003 . 2  |-  2  e.  CC
2 2ne0 9024 . 2  |-  2  =/=  0
31, 2pm3.2i 272 1  |-  ( 2  e.  CC  /\  2  =/=  0 )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2158    =/= wne 2357   CCcc 7822   0cc0 7824   2c2 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-pre-ltirr 7936  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-xp 4644  df-iota 5190  df-fv 5236  df-ov 5891  df-pnf 8007  df-mnf 8008  df-ltxr 8010  df-2 8991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator