ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ne0 Unicode version

Theorem 2ne0 9046
Description: The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.)
Assertion
Ref Expression
2ne0  |-  2  =/=  0

Proof of Theorem 2ne0
StepHypRef Expression
1 2re 9024 . 2  |-  2  e.  RR
2 2pos 9045 . 2  |-  0  <  2
31, 2gt0ne0ii 8479 1  |-  2  =/=  0
Colors of variables: wff set class
Syntax hints:    =/= wne 2360   0cc0 7846   2c2 9005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-pre-ltirr 7958  ax-pre-lttrn 7960  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-br 4022  df-opab 4083  df-xp 4653  df-iota 5199  df-fv 5246  df-ov 5903  df-pnf 8029  df-mnf 8030  df-ltxr 8032  df-2 9013
This theorem is referenced by:  0ne2  9159  2cnne0  9163  2rene0  9164  zeo3  11914  evend2  11935  oddp1d2  11936  3lcm2e6woprm  12129  2logb9irrALT  14877  lgseisenlem1  14936  m1lgs  14938  apdiff  15284
  Copyright terms: Public domain W3C validator