| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ne0 | Unicode version | ||
| Description: The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.) |
| Ref | Expression |
|---|---|
| 2ne0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9180 |
. 2
| |
| 2 | 2pos 9201 |
. 2
| |
| 3 | 1, 2 | gt0ne0ii 8634 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-iota 5278 df-fv 5326 df-ov 6004 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-2 9169 |
| This theorem is referenced by: 0ne2 9316 2cnne0 9320 2rene0 9321 zeo3 12379 evend2 12400 oddp1d2 12401 3lcm2e6woprm 12608 2logb9irrALT 15648 lgseisenlem1 15749 lgsquad2lem1 15760 lgsquad3 15763 m1lgs 15764 apdiff 16416 |
| Copyright terms: Public domain | W3C validator |