![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ne0 | Unicode version |
Description: The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.) |
Ref | Expression |
---|---|
2ne0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 9024 |
. 2
![]() ![]() ![]() ![]() | |
2 | 2pos 9045 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | gt0ne0ii 8479 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-i2m1 7951 ax-0lt1 7952 ax-0id 7954 ax-rnegex 7955 ax-pre-ltirr 7958 ax-pre-lttrn 7960 ax-pre-ltadd 7962 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-br 4022 df-opab 4083 df-xp 4653 df-iota 5199 df-fv 5246 df-ov 5903 df-pnf 8029 df-mnf 8030 df-ltxr 8032 df-2 9013 |
This theorem is referenced by: 0ne2 9159 2cnne0 9163 2rene0 9164 zeo3 11914 evend2 11935 oddp1d2 11936 3lcm2e6woprm 12129 2logb9irrALT 14877 lgseisenlem1 14936 m1lgs 14938 apdiff 15284 |
Copyright terms: Public domain | W3C validator |