ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpnegap Unicode version

Theorem rpnegap 9882
Description: Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.)
Assertion
Ref Expression
rpnegap  |-  ( ( A  e.  RR  /\  A #  0 )  ->  ( A  e.  RR+  \/_  -u A  e.  RR+ ) )

Proof of Theorem rpnegap
StepHypRef Expression
1 0re 8146 . . . . . . 7  |-  0  e.  RR
2 reapltxor 8736 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A #  0  <->  ( A  <  0  \/_  0  <  A ) ) )
31, 2mpan2 425 . . . . . 6  |-  ( A  e.  RR  ->  ( A #  0  <->  ( A  <  0  \/_  0  < 
A ) ) )
4 xorcom 1430 . . . . . 6  |-  ( ( A  <  0  \/_  0  <  A )  <-> 
( 0  <  A  \/_  A  <  0 ) )
53, 4bitrdi 196 . . . . 5  |-  ( A  e.  RR  ->  ( A #  0  <->  ( 0  < 
A  \/_  A  <  0 ) ) )
65pm5.32i 454 . . . 4  |-  ( ( A  e.  RR  /\  A #  0 )  <->  ( A  e.  RR  /\  ( 0  <  A  \/_  A  <  0 ) ) )
7 anxordi 1442 . . . 4  |-  ( ( A  e.  RR  /\  ( 0  <  A  \/_  A  <  0 ) )  <->  ( ( A  e.  RR  /\  0  <  A )  \/_  ( A  e.  RR  /\  A  <  0 ) ) )
86, 7bitri 184 . . 3  |-  ( ( A  e.  RR  /\  A #  0 )  <->  ( ( A  e.  RR  /\  0  <  A )  \/_  ( A  e.  RR  /\  A  <  0 ) ) )
98biimpi 120 . 2  |-  ( ( A  e.  RR  /\  A #  0 )  ->  (
( A  e.  RR  /\  0  <  A ) 
\/_  ( A  e.  RR  /\  A  <  0 ) ) )
10 elrp 9851 . . . 4  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
1110a1i 9 . . 3  |-  ( ( A  e.  RR  /\  A #  0 )  ->  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) ) )
12 elrp 9851 . . . . . 6  |-  ( -u A  e.  RR+  <->  ( -u A  e.  RR  /\  0  <  -u A ) )
13 renegcl 8407 . . . . . . 7  |-  ( A  e.  RR  ->  -u A  e.  RR )
1413biantrurd 305 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <  -u A  <->  ( -u A  e.  RR  /\  0  <  -u A ) ) )
1512, 14bitr4id 199 . . . . 5  |-  ( A  e.  RR  ->  ( -u A  e.  RR+  <->  0  <  -u A ) )
16 lt0neg1 8615 . . . . 5  |-  ( A  e.  RR  ->  ( A  <  0  <->  0  <  -u A ) )
17 ibar 301 . . . . 5  |-  ( A  e.  RR  ->  ( A  <  0  <->  ( A  e.  RR  /\  A  <  0 ) ) )
1815, 16, 173bitr2d 216 . . . 4  |-  ( A  e.  RR  ->  ( -u A  e.  RR+  <->  ( A  e.  RR  /\  A  <  0 ) ) )
1918adantr 276 . . 3  |-  ( ( A  e.  RR  /\  A #  0 )  ->  ( -u A  e.  RR+  <->  ( A  e.  RR  /\  A  <  0 ) ) )
2011, 19xorbi12d 1424 . 2  |-  ( ( A  e.  RR  /\  A #  0 )  ->  (
( A  e.  RR+  \/_  -u A  e.  RR+ )  <->  ( ( A  e.  RR  /\  0  <  A ) 
\/_  ( A  e.  RR  /\  A  <  0 ) ) ) )
219, 20mpbird 167 1  |-  ( ( A  e.  RR  /\  A #  0 )  ->  ( A  e.  RR+  \/_  -u A  e.  RR+ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/_ wxo 1417    e. wcel 2200   class class class wbr 4083   RRcr 7998   0cc0 7999    < clt 8181   -ucneg 8318   # cap 8728   RR+crp 9849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-rp 9850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator