ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubeq0 Unicode version

Theorem grpsubeq0 12807
Description: If the difference between two group elements is zero, they are equal. (subeq0 8149 analog.) (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubid.b  |-  B  =  ( Base `  G
)
grpsubid.o  |-  .0.  =  ( 0g `  G )
grpsubid.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubeq0  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .-  Y )  =  .0.  <->  X  =  Y ) )

Proof of Theorem grpsubeq0
StepHypRef Expression
1 grpsubid.b . . . . 5  |-  B  =  ( Base `  G
)
2 eqid 2171 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
3 eqid 2171 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
4 grpsubid.m . . . . 5  |-  .-  =  ( -g `  G )
51, 2, 3, 4grpsubval 12771 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) )
653adant1 1011 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) )
76eqeq1d 2180 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .-  Y )  =  .0.  <->  ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) )  =  .0.  ) )
8 simp1 993 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Grp )
91, 3grpinvcl 12773 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( invg `  G ) `  Y
)  e.  B )
1093adant2 1012 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( invg `  G ) `  Y
)  e.  B )
11 simp2 994 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
12 grpsubid.o . . . 4  |-  .0.  =  ( 0g `  G )
131, 2, 12, 3grpinvid2 12777 . . 3  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  Y
)  e.  B  /\  X  e.  B )  ->  ( ( ( invg `  G ) `
 ( ( invg `  G ) `
 Y ) )  =  X  <->  ( X
( +g  `  G ) ( ( invg `  G ) `  Y
) )  =  .0.  ) )
148, 10, 11, 13syl3anc 1234 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( invg `  G ) `
 ( ( invg `  G ) `
 Y ) )  =  X  <->  ( X
( +g  `  G ) ( ( invg `  G ) `  Y
) )  =  .0.  ) )
151, 3grpinvinv 12788 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( invg `  G ) `  (
( invg `  G ) `  Y
) )  =  Y )
16153adant2 1012 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( invg `  G ) `  (
( invg `  G ) `  Y
) )  =  Y )
1716eqeq1d 2180 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( invg `  G ) `
 ( ( invg `  G ) `
 Y ) )  =  X  <->  Y  =  X ) )
18 eqcom 2173 . . 3  |-  ( Y  =  X  <->  X  =  Y )
1917, 18bitrdi 195 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( invg `  G ) `
 ( ( invg `  G ) `
 Y ) )  =  X  <->  X  =  Y ) )
207, 14, 193bitr2d 215 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .-  Y )  =  .0.  <->  X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 974    = wceq 1349    e. wcel 2142   ` cfv 5200  (class class class)co 5857   Basecbs 12420   +g cplusg 12484   0gc0g 12618   Grpcgrp 12730   invgcminusg 12731   -gcsg 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-coll 4105  ax-sep 4108  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-setind 4522  ax-cnex 7869  ax-resscn 7870  ax-1re 7872  ax-addrcl 7875
This theorem depends on definitions:  df-bi 116  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-ral 2454  df-rex 2455  df-reu 2456  df-rmo 2457  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-id 4279  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-riota 5813  df-ov 5860  df-oprab 5861  df-mpo 5862  df-1st 6123  df-2nd 6124  df-inn 8883  df-2 8941  df-ndx 12423  df-slot 12424  df-base 12426  df-plusg 12497  df-0g 12620  df-mgm 12632  df-sgrp 12665  df-mnd 12675  df-grp 12733  df-minusg 12734  df-sbg 12735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator