ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrlt Unicode version

Theorem prsrlt 7935
Description: Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrlt  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )

Proof of Theorem prsrlt
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 7702 . . . . 5  |-  1P  e.  P.
21a1i 9 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  1P  e.  P. )
3 simpr 110 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  B  e.  P. )
4 addassprg 7727 . . . 4  |-  ( ( 1P  e.  P.  /\  B  e.  P.  /\  1P  e.  P. )  ->  (
( 1P  +P.  B
)  +P.  1P )  =  ( 1P  +P.  ( B  +P.  1P ) ) )
52, 3, 2, 4syl3anc 1250 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( 1P  +P.  B )  +P.  1P )  =  ( 1P  +P.  ( B  +P.  1P ) ) )
65breq2d 4071 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( A  +P.  1P )  +P. 
1P )  <P  (
( 1P  +P.  B
)  +P.  1P )  <->  ( ( A  +P.  1P )  +P.  1P )  <P 
( 1P  +P.  ( B  +P.  1P ) ) ) )
7 simpl 109 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  e.  P. )
8 ltaprg 7767 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  1P  e.  P. )  ->  ( A  <P  B  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
97, 3, 2, 8syl3anc 1250 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
10 addcomprg 7726 . . . . 5  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  =  ( 1P  +P.  A ) )
117, 2, 10syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  1P )  =  ( 1P  +P.  A ) )
1211breq1d 4069 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  <P  ( 1P  +P.  B )  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
13 ltaprg 7767 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
1413adantl 277 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )
)  ->  ( f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
15 addclpr 7685 . . . . 5  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  e.  P. )
167, 2, 15syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  1P )  e.  P. )
17 addclpr 7685 . . . . 5  |-  ( ( 1P  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  B
)  e.  P. )
182, 3, 17syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  B
)  e.  P. )
19 addcomprg 7726 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
2019adantl 277 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
2114, 16, 18, 2, 20caovord2d 6139 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  <P  ( 1P  +P.  B )  <->  ( ( A  +P.  1P )  +P. 
1P )  <P  (
( 1P  +P.  B
)  +P.  1P )
) )
229, 12, 213bitr2d 216 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  ( ( A  +P.  1P )  +P. 
1P )  <P  (
( 1P  +P.  B
)  +P.  1P )
) )
23 addclpr 7685 . . . 4  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  +P.  1P )  e.  P. )
243, 2, 23syl2anc 411 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  +P.  1P )  e.  P. )
25 ltsrprg 7895 . . 3  |-  ( ( ( ( A  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( ( B  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( A  +P.  1P )  +P. 
1P )  <P  ( 1P  +P.  ( B  +P.  1P ) ) ) )
2616, 2, 24, 2, 25syl22anc 1251 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( A  +P.  1P )  +P.  1P )  <P 
( 1P  +P.  ( B  +P.  1P ) ) ) )
276, 22, 263bitr4d 220 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   <.cop 3646   class class class wbr 4059  (class class class)co 5967   [cec 6641   P.cnp 7439   1Pc1p 7440    +P. cpp 7441    <P cltp 7443    ~R cer 7444    <R cltr 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-iplp 7616  df-iltp 7618  df-enr 7874  df-nr 7875  df-ltr 7878
This theorem is referenced by:  caucvgsrlemcau  7941  caucvgsrlembound  7942  caucvgsrlemgt1  7943  ltrennb  8002
  Copyright terms: Public domain W3C validator