ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrlt Unicode version

Theorem prsrlt 7701
Description: Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrlt  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )

Proof of Theorem prsrlt
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 7468 . . . . 5  |-  1P  e.  P.
21a1i 9 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  1P  e.  P. )
3 simpr 109 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  B  e.  P. )
4 addassprg 7493 . . . 4  |-  ( ( 1P  e.  P.  /\  B  e.  P.  /\  1P  e.  P. )  ->  (
( 1P  +P.  B
)  +P.  1P )  =  ( 1P  +P.  ( B  +P.  1P ) ) )
52, 3, 2, 4syl3anc 1220 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( 1P  +P.  B )  +P.  1P )  =  ( 1P  +P.  ( B  +P.  1P ) ) )
65breq2d 3977 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( A  +P.  1P )  +P. 
1P )  <P  (
( 1P  +P.  B
)  +P.  1P )  <->  ( ( A  +P.  1P )  +P.  1P )  <P 
( 1P  +P.  ( B  +P.  1P ) ) ) )
7 simpl 108 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  e.  P. )
8 ltaprg 7533 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  1P  e.  P. )  ->  ( A  <P  B  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
97, 3, 2, 8syl3anc 1220 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
10 addcomprg 7492 . . . . 5  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  =  ( 1P  +P.  A ) )
117, 2, 10syl2anc 409 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  1P )  =  ( 1P  +P.  A ) )
1211breq1d 3975 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  <P  ( 1P  +P.  B )  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
13 ltaprg 7533 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
1413adantl 275 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )
)  ->  ( f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
15 addclpr 7451 . . . . 5  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  e.  P. )
167, 2, 15syl2anc 409 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  1P )  e.  P. )
17 addclpr 7451 . . . . 5  |-  ( ( 1P  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  B
)  e.  P. )
182, 3, 17syl2anc 409 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  B
)  e.  P. )
19 addcomprg 7492 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
2019adantl 275 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
2114, 16, 18, 2, 20caovord2d 5987 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  <P  ( 1P  +P.  B )  <->  ( ( A  +P.  1P )  +P. 
1P )  <P  (
( 1P  +P.  B
)  +P.  1P )
) )
229, 12, 213bitr2d 215 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  ( ( A  +P.  1P )  +P. 
1P )  <P  (
( 1P  +P.  B
)  +P.  1P )
) )
23 addclpr 7451 . . . 4  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  +P.  1P )  e.  P. )
243, 2, 23syl2anc 409 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  +P.  1P )  e.  P. )
25 ltsrprg 7661 . . 3  |-  ( ( ( ( A  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( ( B  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( A  +P.  1P )  +P. 
1P )  <P  ( 1P  +P.  ( B  +P.  1P ) ) ) )
2616, 2, 24, 2, 25syl22anc 1221 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( A  +P.  1P )  +P.  1P )  <P 
( 1P  +P.  ( B  +P.  1P ) ) ) )
276, 22, 263bitr4d 219 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128   <.cop 3563   class class class wbr 3965  (class class class)co 5821   [cec 6475   P.cnp 7205   1Pc1p 7206    +P. cpp 7207    <P cltp 7209    ~R cer 7210    <R cltr 7217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4249  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-1o 6360  df-2o 6361  df-oadd 6364  df-omul 6365  df-er 6477  df-ec 6479  df-qs 6483  df-ni 7218  df-pli 7219  df-mi 7220  df-lti 7221  df-plpq 7258  df-mpq 7259  df-enq 7261  df-nqqs 7262  df-plqqs 7263  df-mqqs 7264  df-1nqqs 7265  df-rq 7266  df-ltnqqs 7267  df-enq0 7338  df-nq0 7339  df-0nq0 7340  df-plq0 7341  df-mq0 7342  df-inp 7380  df-i1p 7381  df-iplp 7382  df-iltp 7384  df-enr 7640  df-nr 7641  df-ltr 7644
This theorem is referenced by:  caucvgsrlemcau  7707  caucvgsrlembound  7708  caucvgsrlemgt1  7709  ltrennb  7768
  Copyright terms: Public domain W3C validator