ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrlt Unicode version

Theorem prsrlt 7974
Description: Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrlt  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )

Proof of Theorem prsrlt
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 7741 . . . . 5  |-  1P  e.  P.
21a1i 9 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  1P  e.  P. )
3 simpr 110 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  B  e.  P. )
4 addassprg 7766 . . . 4  |-  ( ( 1P  e.  P.  /\  B  e.  P.  /\  1P  e.  P. )  ->  (
( 1P  +P.  B
)  +P.  1P )  =  ( 1P  +P.  ( B  +P.  1P ) ) )
52, 3, 2, 4syl3anc 1271 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( 1P  +P.  B )  +P.  1P )  =  ( 1P  +P.  ( B  +P.  1P ) ) )
65breq2d 4095 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( A  +P.  1P )  +P. 
1P )  <P  (
( 1P  +P.  B
)  +P.  1P )  <->  ( ( A  +P.  1P )  +P.  1P )  <P 
( 1P  +P.  ( B  +P.  1P ) ) ) )
7 simpl 109 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  e.  P. )
8 ltaprg 7806 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  1P  e.  P. )  ->  ( A  <P  B  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
97, 3, 2, 8syl3anc 1271 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
10 addcomprg 7765 . . . . 5  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  =  ( 1P  +P.  A ) )
117, 2, 10syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  1P )  =  ( 1P  +P.  A ) )
1211breq1d 4093 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  <P  ( 1P  +P.  B )  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
13 ltaprg 7806 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
1413adantl 277 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )
)  ->  ( f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
15 addclpr 7724 . . . . 5  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  e.  P. )
167, 2, 15syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  1P )  e.  P. )
17 addclpr 7724 . . . . 5  |-  ( ( 1P  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  B
)  e.  P. )
182, 3, 17syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  B
)  e.  P. )
19 addcomprg 7765 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
2019adantl 277 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
2114, 16, 18, 2, 20caovord2d 6175 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  <P  ( 1P  +P.  B )  <->  ( ( A  +P.  1P )  +P. 
1P )  <P  (
( 1P  +P.  B
)  +P.  1P )
) )
229, 12, 213bitr2d 216 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  ( ( A  +P.  1P )  +P. 
1P )  <P  (
( 1P  +P.  B
)  +P.  1P )
) )
23 addclpr 7724 . . . 4  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  +P.  1P )  e.  P. )
243, 2, 23syl2anc 411 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  +P.  1P )  e.  P. )
25 ltsrprg 7934 . . 3  |-  ( ( ( ( A  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( ( B  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( A  +P.  1P )  +P. 
1P )  <P  ( 1P  +P.  ( B  +P.  1P ) ) ) )
2616, 2, 24, 2, 25syl22anc 1272 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( A  +P.  1P )  +P.  1P )  <P 
( 1P  +P.  ( B  +P.  1P ) ) ) )
276, 22, 263bitr4d 220 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   <.cop 3669   class class class wbr 4083  (class class class)co 6001   [cec 6678   P.cnp 7478   1Pc1p 7479    +P. cpp 7480    <P cltp 7482    ~R cer 7483    <R cltr 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-i1p 7654  df-iplp 7655  df-iltp 7657  df-enr 7913  df-nr 7914  df-ltr 7917
This theorem is referenced by:  caucvgsrlemcau  7980  caucvgsrlembound  7981  caucvgsrlemgt1  7982  ltrennb  8041
  Copyright terms: Public domain W3C validator