ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrlt Unicode version

Theorem prsrlt 7849
Description: Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrlt  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )

Proof of Theorem prsrlt
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 7616 . . . . 5  |-  1P  e.  P.
21a1i 9 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  1P  e.  P. )
3 simpr 110 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  B  e.  P. )
4 addassprg 7641 . . . 4  |-  ( ( 1P  e.  P.  /\  B  e.  P.  /\  1P  e.  P. )  ->  (
( 1P  +P.  B
)  +P.  1P )  =  ( 1P  +P.  ( B  +P.  1P ) ) )
52, 3, 2, 4syl3anc 1249 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( 1P  +P.  B )  +P.  1P )  =  ( 1P  +P.  ( B  +P.  1P ) ) )
65breq2d 4042 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( A  +P.  1P )  +P. 
1P )  <P  (
( 1P  +P.  B
)  +P.  1P )  <->  ( ( A  +P.  1P )  +P.  1P )  <P 
( 1P  +P.  ( B  +P.  1P ) ) ) )
7 simpl 109 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  e.  P. )
8 ltaprg 7681 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  1P  e.  P. )  ->  ( A  <P  B  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
97, 3, 2, 8syl3anc 1249 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
10 addcomprg 7640 . . . . 5  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  =  ( 1P  +P.  A ) )
117, 2, 10syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  1P )  =  ( 1P  +P.  A ) )
1211breq1d 4040 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  <P  ( 1P  +P.  B )  <->  ( 1P  +P.  A )  <P  ( 1P  +P.  B ) ) )
13 ltaprg 7681 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
1413adantl 277 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )
)  ->  ( f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
15 addclpr 7599 . . . . 5  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  e.  P. )
167, 2, 15syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  1P )  e.  P. )
17 addclpr 7599 . . . . 5  |-  ( ( 1P  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  B
)  e.  P. )
182, 3, 17syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  B
)  e.  P. )
19 addcomprg 7640 . . . . 5  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
2019adantl 277 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
2114, 16, 18, 2, 20caovord2d 6090 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  <P  ( 1P  +P.  B )  <->  ( ( A  +P.  1P )  +P. 
1P )  <P  (
( 1P  +P.  B
)  +P.  1P )
) )
229, 12, 213bitr2d 216 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  ( ( A  +P.  1P )  +P. 
1P )  <P  (
( 1P  +P.  B
)  +P.  1P )
) )
23 addclpr 7599 . . . 4  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  +P.  1P )  e.  P. )
243, 2, 23syl2anc 411 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  +P.  1P )  e.  P. )
25 ltsrprg 7809 . . 3  |-  ( ( ( ( A  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( ( B  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( A  +P.  1P )  +P. 
1P )  <P  ( 1P  +P.  ( B  +P.  1P ) ) ) )
2616, 2, 24, 2, 25syl22anc 1250 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( A  +P.  1P )  +P.  1P )  <P 
( 1P  +P.  ( B  +P.  1P ) ) ) )
276, 22, 263bitr4d 220 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   <.cop 3622   class class class wbr 4030  (class class class)co 5919   [cec 6587   P.cnp 7353   1Pc1p 7354    +P. cpp 7355    <P cltp 7357    ~R cer 7358    <R cltr 7365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-iltp 7532  df-enr 7788  df-nr 7789  df-ltr 7792
This theorem is referenced by:  caucvgsrlemcau  7855  caucvgsrlembound  7856  caucvgsrlemgt1  7857  ltrennb  7916
  Copyright terms: Public domain W3C validator