ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lesub2 Unicode version

Theorem lesub2 8501
Description: Subtraction of both sides of 'less than or equal to'. (Contributed by NM, 29-Sep-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lesub2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( C  -  B )  <_  ( C  -  A )
) )

Proof of Theorem lesub2
StepHypRef Expression
1 leadd2 8475 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( C  +  A )  <_  ( C  +  B )
) )
2 simp3 1001 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
3 simp1 999 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
42, 3readdcld 8073 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  +  A )  e.  RR )
5 simp2 1000 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
6 lesubadd 8478 . . . 4  |-  ( ( ( C  +  A
)  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( C  +  A )  -  B
)  <_  C  <->  ( C  +  A )  <_  ( C  +  B )
) )
74, 5, 2, 6syl3anc 1249 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( C  +  A )  -  B
)  <_  C  <->  ( C  +  A )  <_  ( C  +  B )
) )
82recnd 8072 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  CC )
93recnd 8072 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  CC )
105recnd 8072 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  CC )
118, 9, 10addsubd 8375 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  -  B )  =  ( ( C  -  B )  +  A ) )
1211breq1d 4044 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( C  +  A )  -  B
)  <_  C  <->  ( ( C  -  B )  +  A )  <_  C
) )
131, 7, 123bitr2d 216 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( ( C  -  B )  +  A )  <_  C
) )
142, 5resubcld 8424 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  -  B )  e.  RR )
15 leaddsub 8482 . . 3  |-  ( ( ( C  -  B
)  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  (
( ( C  -  B )  +  A
)  <_  C  <->  ( C  -  B )  <_  ( C  -  A )
) )
1614, 3, 2, 15syl3anc 1249 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( C  -  B )  +  A
)  <_  C  <->  ( C  -  B )  <_  ( C  -  A )
) )
1713, 16bitrd 188 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( C  -  B )  <_  ( C  -  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895    + caddc 7899    <_ cle 8079    - cmin 8214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217
This theorem is referenced by:  le2sub  8505  leneg  8509  lesub0  8523  lesub2d  8597  gausslemma2dlem1a  15383
  Copyright terms: Public domain W3C validator