ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lesub2 Unicode version

Theorem lesub2 8565
Description: Subtraction of both sides of 'less than or equal to'. (Contributed by NM, 29-Sep-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lesub2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( C  -  B )  <_  ( C  -  A )
) )

Proof of Theorem lesub2
StepHypRef Expression
1 leadd2 8539 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( C  +  A )  <_  ( C  +  B )
) )
2 simp3 1002 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
3 simp1 1000 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
42, 3readdcld 8137 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  +  A )  e.  RR )
5 simp2 1001 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
6 lesubadd 8542 . . . 4  |-  ( ( ( C  +  A
)  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( C  +  A )  -  B
)  <_  C  <->  ( C  +  A )  <_  ( C  +  B )
) )
74, 5, 2, 6syl3anc 1250 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( C  +  A )  -  B
)  <_  C  <->  ( C  +  A )  <_  ( C  +  B )
) )
82recnd 8136 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  CC )
93recnd 8136 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  CC )
105recnd 8136 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  CC )
118, 9, 10addsubd 8439 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  -  B )  =  ( ( C  -  B )  +  A ) )
1211breq1d 4069 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( C  +  A )  -  B
)  <_  C  <->  ( ( C  -  B )  +  A )  <_  C
) )
131, 7, 123bitr2d 216 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( ( C  -  B )  +  A )  <_  C
) )
142, 5resubcld 8488 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  -  B )  e.  RR )
15 leaddsub 8546 . . 3  |-  ( ( ( C  -  B
)  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  (
( ( C  -  B )  +  A
)  <_  C  <->  ( C  -  B )  <_  ( C  -  A )
) )
1614, 3, 2, 15syl3anc 1250 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( C  -  B )  +  A
)  <_  C  <->  ( C  -  B )  <_  ( C  -  A )
) )
1713, 16bitrd 188 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( C  -  B )  <_  ( C  -  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   RRcr 7959    + caddc 7963    <_ cle 8143    - cmin 8278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281
This theorem is referenced by:  le2sub  8569  leneg  8573  lesub0  8587  lesub2d  8661  gausslemma2dlem1a  15650
  Copyright terms: Public domain W3C validator