| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nn0ge0 | Unicode version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) | 
| Ref | Expression | 
|---|---|
| nn0ge0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elnn0 9251 | 
. 2
 | |
| 2 | nnre 8997 | 
. . . 4
 | |
| 3 | nngt0 9015 | 
. . . 4
 | |
| 4 | 0re 8026 | 
. . . . 5
 | |
| 5 | ltle 8114 | 
. . . . 5
 | |
| 6 | 4, 5 | mpan 424 | 
. . . 4
 | 
| 7 | 2, 3, 6 | sylc 62 | 
. . 3
 | 
| 8 | 0le0 9079 | 
. . . 4
 | |
| 9 | breq2 4037 | 
. . . 4
 | |
| 10 | 8, 9 | mpbiri 168 | 
. . 3
 | 
| 11 | 7, 10 | jaoi 717 | 
. 2
 | 
| 12 | 1, 11 | sylbi 121 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-inn 8991 df-n0 9250 | 
| This theorem is referenced by: nn0nlt0 9275 nn0ge0i 9276 nn0le0eq0 9277 nn0p1gt0 9278 0mnnnnn0 9281 nn0addge1 9295 nn0addge2 9296 nn0ge0d 9305 elnn0z 9339 nn0negleid 9394 nn0lt10b 9406 nn0ge0div 9413 nn0pnfge0 9866 xnn0xadd0 9942 0elfz 10193 fz0fzelfz0 10202 fz0fzdiffz0 10205 fzctr 10208 difelfzle 10209 elfzodifsumelfzo 10277 fvinim0ffz 10317 subfzo0 10318 adddivflid 10382 modqmuladdnn0 10460 modfzo0difsn 10487 uzennn 10528 bernneq 10752 bernneq3 10754 zzlesq 10800 faclbnd 10833 faclbnd6 10836 facubnd 10837 bcval5 10855 fihashneq0 10886 nn0maxcl 11390 dvdseq 12013 evennn02n 12047 nn0ehalf 12068 nn0oddm1d2 12074 gcdn0gt0 12145 nn0gcdid0 12148 absmulgcd 12184 algcvgblem 12217 algcvga 12219 lcmgcdnn 12250 hashgcdlem 12406 odzdvds 12414 pcfaclem 12518 znnen 12615 logbgcd1irr 15203 lgsdinn0 15289 | 
| Copyright terms: Public domain | W3C validator |