| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ge0 | Unicode version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9297 |
. 2
| |
| 2 | nnre 9043 |
. . . 4
| |
| 3 | nngt0 9061 |
. . . 4
| |
| 4 | 0re 8072 |
. . . . 5
| |
| 5 | ltle 8160 |
. . . . 5
| |
| 6 | 4, 5 | mpan 424 |
. . . 4
|
| 7 | 2, 3, 6 | sylc 62 |
. . 3
|
| 8 | 0le0 9125 |
. . . 4
| |
| 9 | breq2 4048 |
. . . 4
| |
| 10 | 8, 9 | mpbiri 168 |
. . 3
|
| 11 | 7, 10 | jaoi 718 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-iota 5232 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-inn 9037 df-n0 9296 |
| This theorem is referenced by: nn0nlt0 9321 nn0ge0i 9322 nn0le0eq0 9323 nn0p1gt0 9324 0mnnnnn0 9327 nn0addge1 9341 nn0addge2 9342 nn0ge0d 9351 elnn0z 9385 nn0negleid 9441 nn0lt10b 9453 nn0ge0div 9460 nn0pnfge0 9913 xnn0xadd0 9989 0elfz 10240 fz0fzelfz0 10249 fz0fzdiffz0 10252 fzctr 10255 difelfzle 10256 elfzodifsumelfzo 10330 fvinim0ffz 10370 subfzo0 10371 adddivflid 10435 modqmuladdnn0 10513 modfzo0difsn 10540 uzennn 10581 bernneq 10805 bernneq3 10807 zzlesq 10853 faclbnd 10886 faclbnd6 10889 facubnd 10890 bcval5 10908 fihashneq0 10939 ccat0 11052 nn0maxcl 11536 dvdseq 12159 evennn02n 12193 nn0ehalf 12214 nn0oddm1d2 12220 bitsinv1 12273 gcdn0gt0 12299 nn0gcdid0 12302 absmulgcd 12338 algcvgblem 12371 algcvga 12373 lcmgcdnn 12404 hashgcdlem 12560 odzdvds 12568 pcfaclem 12672 znnen 12769 logbgcd1irr 15439 lgsdinn0 15525 |
| Copyright terms: Public domain | W3C validator |