| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ge0 | Unicode version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9299 |
. 2
| |
| 2 | nnre 9045 |
. . . 4
| |
| 3 | nngt0 9063 |
. . . 4
| |
| 4 | 0re 8074 |
. . . . 5
| |
| 5 | ltle 8162 |
. . . . 5
| |
| 6 | 4, 5 | mpan 424 |
. . . 4
|
| 7 | 2, 3, 6 | sylc 62 |
. . 3
|
| 8 | 0le0 9127 |
. . . 4
| |
| 9 | breq2 4049 |
. . . 4
| |
| 10 | 8, 9 | mpbiri 168 |
. . 3
|
| 11 | 7, 10 | jaoi 718 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-iota 5233 df-fv 5280 df-ov 5949 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-inn 9039 df-n0 9298 |
| This theorem is referenced by: nn0nlt0 9323 nn0ge0i 9324 nn0le0eq0 9325 nn0p1gt0 9326 0mnnnnn0 9329 nn0addge1 9343 nn0addge2 9344 nn0ge0d 9353 elnn0z 9387 nn0negleid 9443 nn0lt10b 9455 nn0ge0div 9462 nn0pnfge0 9915 xnn0xadd0 9991 0elfz 10242 fz0fzelfz0 10251 fz0fzdiffz0 10254 fzctr 10257 difelfzle 10258 elfzodifsumelfzo 10332 fvinim0ffz 10372 subfzo0 10373 adddivflid 10437 modqmuladdnn0 10515 modfzo0difsn 10542 uzennn 10583 bernneq 10807 bernneq3 10809 zzlesq 10855 faclbnd 10888 faclbnd6 10891 facubnd 10892 bcval5 10910 fihashneq0 10941 ccat0 11055 nn0maxcl 11569 dvdseq 12192 evennn02n 12226 nn0ehalf 12247 nn0oddm1d2 12253 bitsinv1 12306 gcdn0gt0 12332 nn0gcdid0 12335 absmulgcd 12371 algcvgblem 12404 algcvga 12406 lcmgcdnn 12437 hashgcdlem 12593 odzdvds 12601 pcfaclem 12705 znnen 12802 logbgcd1irr 15472 lgsdinn0 15558 |
| Copyright terms: Public domain | W3C validator |