| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ge0 | Unicode version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9371 |
. 2
| |
| 2 | nnre 9117 |
. . . 4
| |
| 3 | nngt0 9135 |
. . . 4
| |
| 4 | 0re 8146 |
. . . . 5
| |
| 5 | ltle 8234 |
. . . . 5
| |
| 6 | 4, 5 | mpan 424 |
. . . 4
|
| 7 | 2, 3, 6 | sylc 62 |
. . 3
|
| 8 | 0le0 9199 |
. . . 4
| |
| 9 | breq2 4087 |
. . . 4
| |
| 10 | 8, 9 | mpbiri 168 |
. . 3
|
| 11 | 7, 10 | jaoi 721 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-iota 5278 df-fv 5326 df-ov 6004 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-inn 9111 df-n0 9370 |
| This theorem is referenced by: nn0nlt0 9395 nn0ge0i 9396 nn0le0eq0 9397 nn0p1gt0 9398 0mnnnnn0 9401 nn0addge1 9415 nn0addge2 9416 nn0ge0d 9425 elnn0z 9459 nn0negleid 9515 nn0lt10b 9527 nn0ge0div 9534 nn0pnfge0 9987 xnn0xadd0 10063 0elfz 10314 fz0fzelfz0 10323 fz0fzdiffz0 10326 fzctr 10329 difelfzle 10330 fzoun 10379 elfzodifsumelfzo 10407 fvinim0ffz 10447 subfzo0 10448 adddivflid 10512 modqmuladdnn0 10590 modfzo0difsn 10617 uzennn 10658 bernneq 10882 bernneq3 10884 zzlesq 10930 faclbnd 10963 faclbnd6 10966 facubnd 10967 bcval5 10985 fihashneq0 11016 ccat0 11131 nn0maxcl 11736 dvdseq 12359 evennn02n 12393 nn0ehalf 12414 nn0oddm1d2 12420 bitsinv1 12473 gcdn0gt0 12499 nn0gcdid0 12502 absmulgcd 12538 algcvgblem 12571 algcvga 12573 lcmgcdnn 12604 hashgcdlem 12760 odzdvds 12768 pcfaclem 12872 znnen 12969 logbgcd1irr 15641 lgsdinn0 15727 |
| Copyright terms: Public domain | W3C validator |