Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ge0 | Unicode version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9130 | . 2 | |
2 | nnre 8878 | . . . 4 | |
3 | nngt0 8896 | . . . 4 | |
4 | 0re 7913 | . . . . 5 | |
5 | ltle 8000 | . . . . 5 | |
6 | 4, 5 | mpan 422 | . . . 4 |
7 | 2, 3, 6 | sylc 62 | . . 3 |
8 | 0le0 8960 | . . . 4 | |
9 | breq2 3991 | . . . 4 | |
10 | 8, 9 | mpbiri 167 | . . 3 |
11 | 7, 10 | jaoi 711 | . 2 |
12 | 1, 11 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 703 wceq 1348 wcel 2141 class class class wbr 3987 cr 7766 cc0 7767 clt 7947 cle 7948 cn 8871 cn0 9128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-i2m1 7872 ax-0lt1 7873 ax-0id 7875 ax-rnegex 7876 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-ltadd 7883 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-xp 4615 df-cnv 4617 df-iota 5158 df-fv 5204 df-ov 5854 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-inn 8872 df-n0 9129 |
This theorem is referenced by: nn0nlt0 9154 nn0ge0i 9155 nn0le0eq0 9156 nn0p1gt0 9157 0mnnnnn0 9160 nn0addge1 9174 nn0addge2 9175 nn0ge0d 9184 elnn0z 9218 nn0negleid 9273 nn0lt10b 9285 nn0ge0div 9292 nn0pnfge0 9741 xnn0xadd0 9817 0elfz 10067 fz0fzelfz0 10076 fz0fzdiffz0 10079 fzctr 10082 difelfzle 10083 elfzodifsumelfzo 10150 fvinim0ffz 10190 subfzo0 10191 adddivflid 10241 modqmuladdnn0 10317 modfzo0difsn 10344 uzennn 10385 bernneq 10589 bernneq3 10591 faclbnd 10668 faclbnd6 10671 facubnd 10672 bcval5 10690 fihashneq0 10722 dvdseq 11801 evennn02n 11834 nn0ehalf 11855 nn0oddm1d2 11861 gcdn0gt0 11926 nn0gcdid0 11929 absmulgcd 11965 algcvgblem 11996 algcvga 11998 lcmgcdnn 12029 hashgcdlem 12185 odzdvds 12192 pcfaclem 12294 znnen 12346 logbgcd1irr 13644 lgsdinn0 13708 |
Copyright terms: Public domain | W3C validator |