| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ge0 | Unicode version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9268 |
. 2
| |
| 2 | nnre 9014 |
. . . 4
| |
| 3 | nngt0 9032 |
. . . 4
| |
| 4 | 0re 8043 |
. . . . 5
| |
| 5 | ltle 8131 |
. . . . 5
| |
| 6 | 4, 5 | mpan 424 |
. . . 4
|
| 7 | 2, 3, 6 | sylc 62 |
. . 3
|
| 8 | 0le0 9096 |
. . . 4
| |
| 9 | breq2 4038 |
. . . 4
| |
| 10 | 8, 9 | mpbiri 168 |
. . 3
|
| 11 | 7, 10 | jaoi 717 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-inn 9008 df-n0 9267 |
| This theorem is referenced by: nn0nlt0 9292 nn0ge0i 9293 nn0le0eq0 9294 nn0p1gt0 9295 0mnnnnn0 9298 nn0addge1 9312 nn0addge2 9313 nn0ge0d 9322 elnn0z 9356 nn0negleid 9411 nn0lt10b 9423 nn0ge0div 9430 nn0pnfge0 9883 xnn0xadd0 9959 0elfz 10210 fz0fzelfz0 10219 fz0fzdiffz0 10222 fzctr 10225 difelfzle 10226 elfzodifsumelfzo 10294 fvinim0ffz 10334 subfzo0 10335 adddivflid 10399 modqmuladdnn0 10477 modfzo0difsn 10504 uzennn 10545 bernneq 10769 bernneq3 10771 zzlesq 10817 faclbnd 10850 faclbnd6 10853 facubnd 10854 bcval5 10872 fihashneq0 10903 nn0maxcl 11407 dvdseq 12030 evennn02n 12064 nn0ehalf 12085 nn0oddm1d2 12091 bitsinv1 12144 gcdn0gt0 12170 nn0gcdid0 12173 absmulgcd 12209 algcvgblem 12242 algcvga 12244 lcmgcdnn 12275 hashgcdlem 12431 odzdvds 12439 pcfaclem 12543 znnen 12640 logbgcd1irr 15287 lgsdinn0 15373 |
| Copyright terms: Public domain | W3C validator |