| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ge0 | Unicode version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9332 |
. 2
| |
| 2 | nnre 9078 |
. . . 4
| |
| 3 | nngt0 9096 |
. . . 4
| |
| 4 | 0re 8107 |
. . . . 5
| |
| 5 | ltle 8195 |
. . . . 5
| |
| 6 | 4, 5 | mpan 424 |
. . . 4
|
| 7 | 2, 3, 6 | sylc 62 |
. . 3
|
| 8 | 0le0 9160 |
. . . 4
| |
| 9 | breq2 4063 |
. . . 4
| |
| 10 | 8, 9 | mpbiri 168 |
. . 3
|
| 11 | 7, 10 | jaoi 718 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-inn 9072 df-n0 9331 |
| This theorem is referenced by: nn0nlt0 9356 nn0ge0i 9357 nn0le0eq0 9358 nn0p1gt0 9359 0mnnnnn0 9362 nn0addge1 9376 nn0addge2 9377 nn0ge0d 9386 elnn0z 9420 nn0negleid 9476 nn0lt10b 9488 nn0ge0div 9495 nn0pnfge0 9948 xnn0xadd0 10024 0elfz 10275 fz0fzelfz0 10284 fz0fzdiffz0 10287 fzctr 10290 difelfzle 10291 fzoun 10340 elfzodifsumelfzo 10367 fvinim0ffz 10407 subfzo0 10408 adddivflid 10472 modqmuladdnn0 10550 modfzo0difsn 10577 uzennn 10618 bernneq 10842 bernneq3 10844 zzlesq 10890 faclbnd 10923 faclbnd6 10926 facubnd 10927 bcval5 10945 fihashneq0 10976 ccat0 11090 nn0maxcl 11651 dvdseq 12274 evennn02n 12308 nn0ehalf 12329 nn0oddm1d2 12335 bitsinv1 12388 gcdn0gt0 12414 nn0gcdid0 12417 absmulgcd 12453 algcvgblem 12486 algcvga 12488 lcmgcdnn 12519 hashgcdlem 12675 odzdvds 12683 pcfaclem 12787 znnen 12884 logbgcd1irr 15554 lgsdinn0 15640 |
| Copyright terms: Public domain | W3C validator |