| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9nn | Unicode version | ||
| Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
| Ref | Expression |
|---|---|
| 9nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 9137 |
. 2
| |
| 2 | 8nn 9239 |
. . 3
| |
| 3 | peano2nn 9083 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 |
| This theorem is referenced by: 9nn0 9354 9p1e10 9541 10nn 9554 3dvdsdec 12291 tsetndx 13133 tsetid 13134 tsetslid 13135 tsetndxnn 13136 topgrpstrd 13143 imasvalstrd 13217 cnfldstr 14435 psrvalstrd 14545 eltpsg 14627 setsmsbasg 15066 2logb9irr 15558 sqrt2cxp2logb9e3 15562 2logb9irrap 15564 ex-gcd 15867 |
| Copyright terms: Public domain | W3C validator |