ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9nn Unicode version

Theorem 9nn 9207
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.)
Assertion
Ref Expression
9nn  |-  9  e.  NN

Proof of Theorem 9nn
StepHypRef Expression
1 df-9 9104 . 2  |-  9  =  ( 8  +  1 )
2 8nn 9206 . . 3  |-  8  e.  NN
3 peano2nn 9050 . . 3  |-  ( 8  e.  NN  ->  (
8  +  1 )  e.  NN )
42, 3ax-mp 5 . 2  |-  ( 8  +  1 )  e.  NN
51, 4eqeltri 2278 1  |-  9  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 2176  (class class class)co 5946   1c1 7928    + caddc 7930   NNcn 9038   8c8 9095   9c9 9096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4163  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-9 9104
This theorem is referenced by:  9nn0  9321  9p1e10  9508  10nn  9521  3dvdsdec  12209  tsetndx  13051  tsetid  13052  tsetslid  13053  tsetndxnn  13054  topgrpstrd  13061  imasvalstrd  13135  cnfldstr  14353  psrvalstrd  14463  eltpsg  14545  setsmsbasg  14984  2logb9irr  15476  sqrt2cxp2logb9e3  15480  2logb9irrap  15482  ex-gcd  15704
  Copyright terms: Public domain W3C validator