Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9nn | Unicode version |
Description: 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
Ref | Expression |
---|---|
9nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 8899 | . 2 | |
2 | 8nn 9000 | . . 3 | |
3 | peano2nn 8845 | . . 3 | |
4 | 2, 3 | ax-mp 5 | . 2 |
5 | 1, 4 | eqeltri 2230 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2128 (class class class)co 5824 c1 7733 caddc 7735 cn 8833 c8 8890 c9 8891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 ax-cnex 7823 ax-resscn 7824 ax-1re 7826 ax-addrcl 7829 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-iota 5135 df-fv 5178 df-ov 5827 df-inn 8834 df-2 8892 df-3 8893 df-4 8894 df-5 8895 df-6 8896 df-7 8897 df-8 8898 df-9 8899 |
This theorem is referenced by: 9nn0 9114 9p1e10 9297 10nn 9310 3dvdsdec 11755 tsetndx 12338 tsetid 12339 tsetslid 12340 topgrpstrd 12341 eltpsg 12438 setsmsbasg 12879 2logb9irr 13288 sqrt2cxp2logb9e3 13292 2logb9irrap 13294 ex-gcd 13307 |
Copyright terms: Public domain | W3C validator |