ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negsub Unicode version

Theorem negsub 8017
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
negsub  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )

Proof of Theorem negsub
StepHypRef Expression
1 df-neg 7943 . . . 4  |-  -u B  =  ( 0  -  B )
21oveq2i 5785 . . 3  |-  ( A  +  -u B )  =  ( A  +  ( 0  -  B ) )
32a1i 9 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  +  ( 0  -  B ) ) )
4 0cn 7765 . . 3  |-  0  e.  CC
5 addsubass 7979 . . 3  |-  ( ( A  e.  CC  /\  0  e.  CC  /\  B  e.  CC )  ->  (
( A  +  0 )  -  B )  =  ( A  +  ( 0  -  B
) ) )
64, 5mp3an2 1303 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
0 )  -  B
)  =  ( A  +  ( 0  -  B ) ) )
7 simpl 108 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
87addid1d 7918 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  0 )  =  A )
98oveq1d 5789 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
0 )  -  B
)  =  ( A  -  B ) )
103, 6, 93eqtr2d 2178 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7625   0cc0 7627    + caddc 7630    - cmin 7940   -ucneg 7941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-resscn 7719  ax-1cn 7720  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7942  df-neg 7943
This theorem is referenced by:  negdi2  8027  negsubdi2  8028  resubcli  8032  resubcl  8033  negsubi  8047  negsubd  8086  submul2  8168  mulsub  8170  subap0  8412  divsubdirap  8475  zsubcl  9102  elz2  9129  qsubcl  9437  rexsub  9643  fzsubel  9847  expsubap  10348  binom2sub  10412  resub  10649  imsub  10657  cjsub  10671  cjreim  10682  absdiflt  10871  absdifle  10872  abs2dif2  10886  subcn2  11087  efsub  11394  efi4p  11431  sinsub  11454  cossub  11455  demoivreALT  11487  dvdssub  11545  modgcd  11686
  Copyright terms: Public domain W3C validator