| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negsub | Unicode version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negsub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 8219 |
. . . 4
| |
| 2 | 1 | oveq2i 5936 |
. . 3
|
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 0cn 8037 |
. . 3
| |
| 5 | addsubass 8255 |
. . 3
| |
| 6 | 4, 5 | mp3an2 1336 |
. 2
|
| 7 | simpl 109 |
. . . 4
| |
| 8 | 7 | addridd 8194 |
. . 3
|
| 9 | 8 | oveq1d 5940 |
. 2
|
| 10 | 3, 6, 9 | 3eqtr2d 2235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8218 df-neg 8219 |
| This theorem is referenced by: negdi2 8303 negsubdi2 8304 resubcli 8308 resubcl 8309 negsubi 8323 negsubd 8362 submul2 8444 mulsub 8446 subap0 8689 divsubdirap 8754 zsubcl 9386 difgtsumgt 9414 elz2 9416 qsubcl 9731 rexsub 9947 fzsubel 10154 expsubap 10698 binom2sub 10764 resub 11054 imsub 11062 cjsub 11076 cjreim 11087 absdiflt 11276 absdifle 11277 abs2dif2 11291 subcn2 11495 efsub 11865 efi4p 11901 sinsub 11924 cossub 11925 demoivreALT 11958 dvdssub 12022 modgcd 12185 gzsubcl 12576 cnfldsub 14209 wilthlem1 15324 lgsvalmod 15368 |
| Copyright terms: Public domain | W3C validator |