| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negsub | Unicode version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negsub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 8217 |
. . . 4
| |
| 2 | 1 | oveq2i 5936 |
. . 3
|
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 0cn 8035 |
. . 3
| |
| 5 | addsubass 8253 |
. . 3
| |
| 6 | 4, 5 | mp3an2 1336 |
. 2
|
| 7 | simpl 109 |
. . . 4
| |
| 8 | 7 | addridd 8192 |
. . 3
|
| 9 | 8 | oveq1d 5940 |
. 2
|
| 10 | 3, 6, 9 | 3eqtr2d 2235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-neg 8217 |
| This theorem is referenced by: negdi2 8301 negsubdi2 8302 resubcli 8306 resubcl 8307 negsubi 8321 negsubd 8360 submul2 8442 mulsub 8444 subap0 8687 divsubdirap 8752 zsubcl 9384 difgtsumgt 9412 elz2 9414 qsubcl 9729 rexsub 9945 fzsubel 10152 expsubap 10696 binom2sub 10762 resub 11052 imsub 11060 cjsub 11074 cjreim 11085 absdiflt 11274 absdifle 11275 abs2dif2 11289 subcn2 11493 efsub 11863 efi4p 11899 sinsub 11922 cossub 11923 demoivreALT 11956 dvdssub 12020 modgcd 12183 gzsubcl 12574 cnfldsub 14207 wilthlem1 15300 lgsvalmod 15344 |
| Copyright terms: Public domain | W3C validator |