Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negsub | Unicode version |
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negsub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 8105 | . . . 4 | |
2 | 1 | oveq2i 5876 | . . 3 |
3 | 2 | a1i 9 | . 2 |
4 | 0cn 7924 | . . 3 | |
5 | addsubass 8141 | . . 3 | |
6 | 4, 5 | mp3an2 1325 | . 2 |
7 | simpl 109 | . . . 4 | |
8 | 7 | addid1d 8080 | . . 3 |
9 | 8 | oveq1d 5880 | . 2 |
10 | 3, 6, 9 | 3eqtr2d 2214 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wcel 2146 (class class class)co 5865 cc 7784 cc0 7786 caddc 7789 cmin 8102 cneg 8103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-resscn 7878 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sub 8104 df-neg 8105 |
This theorem is referenced by: negdi2 8189 negsubdi2 8190 resubcli 8194 resubcl 8195 negsubi 8209 negsubd 8248 submul2 8330 mulsub 8332 subap0 8574 divsubdirap 8637 zsubcl 9265 difgtsumgt 9293 elz2 9295 qsubcl 9609 rexsub 9822 fzsubel 10028 expsubap 10536 binom2sub 10601 resub 10845 imsub 10853 cjsub 10867 cjreim 10878 absdiflt 11067 absdifle 11068 abs2dif2 11082 subcn2 11285 efsub 11655 efi4p 11691 sinsub 11714 cossub 11715 demoivreALT 11747 dvdssub 11811 modgcd 11957 gzsubcl 12343 lgsvalmod 13971 |
Copyright terms: Public domain | W3C validator |