| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negsub | Unicode version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negsub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 8281 |
. . . 4
| |
| 2 | 1 | oveq2i 5978 |
. . 3
|
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 0cn 8099 |
. . 3
| |
| 5 | addsubass 8317 |
. . 3
| |
| 6 | 4, 5 | mp3an2 1338 |
. 2
|
| 7 | simpl 109 |
. . . 4
| |
| 8 | 7 | addridd 8256 |
. . 3
|
| 9 | 8 | oveq1d 5982 |
. 2
|
| 10 | 3, 6, 9 | 3eqtr2d 2246 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-neg 8281 |
| This theorem is referenced by: negdi2 8365 negsubdi2 8366 resubcli 8370 resubcl 8371 negsubi 8385 negsubd 8424 submul2 8506 mulsub 8508 subap0 8751 divsubdirap 8816 zsubcl 9448 difgtsumgt 9477 elz2 9479 qsubcl 9794 rexsub 10010 fzsubel 10217 expsubap 10769 binom2sub 10835 resub 11296 imsub 11304 cjsub 11318 cjreim 11329 absdiflt 11518 absdifle 11519 abs2dif2 11533 subcn2 11737 efsub 12107 efi4p 12143 sinsub 12166 cossub 12167 demoivreALT 12200 dvdssub 12264 modgcd 12427 gzsubcl 12818 cnfldsub 14452 wilthlem1 15567 lgsvalmod 15611 |
| Copyright terms: Public domain | W3C validator |