ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omgadd Unicode version

Theorem omgadd 10748
Description: Mapping ordinal addition to integer addition. (Contributed by Jim Kingdon, 24-Feb-2022.)
Hypothesis
Ref Expression
omgadd.1  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
omgadd  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )

Proof of Theorem omgadd
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5873 . . . . . 6  |-  ( n  =  (/)  ->  ( A  +o  n )  =  ( A  +o  (/) ) )
21fveq2d 5511 . . . . 5  |-  ( n  =  (/)  ->  ( G `
 ( A  +o  n ) )  =  ( G `  ( A  +o  (/) ) ) )
3 fveq2 5507 . . . . . 6  |-  ( n  =  (/)  ->  ( G `
 n )  =  ( G `  (/) ) )
43oveq2d 5881 . . . . 5  |-  ( n  =  (/)  ->  ( ( G `  A )  +  ( G `  n ) )  =  ( ( G `  A )  +  ( G `  (/) ) ) )
52, 4eqeq12d 2190 . . . 4  |-  ( n  =  (/)  ->  ( ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  (/) ) )  =  ( ( G `
 A )  +  ( G `  (/) ) ) ) )
65imbi2d 230 . . 3  |-  ( n  =  (/)  ->  ( ( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( ( G `
 A )  +  ( G `  (/) ) ) ) ) )
7 oveq2 5873 . . . . . 6  |-  ( n  =  z  ->  ( A  +o  n )  =  ( A  +o  z
) )
87fveq2d 5511 . . . . 5  |-  ( n  =  z  ->  ( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  z ) ) )
9 fveq2 5507 . . . . . 6  |-  ( n  =  z  ->  ( G `  n )  =  ( G `  z ) )
109oveq2d 5881 . . . . 5  |-  ( n  =  z  ->  (
( G `  A
)  +  ( G `
 n ) )  =  ( ( G `
 A )  +  ( G `  z
) ) )
118, 10eqeq12d 2190 . . . 4  |-  ( n  =  z  ->  (
( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) ) ) )
1211imbi2d 230 . . 3  |-  ( n  =  z  ->  (
( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) ) ) ) )
13 oveq2 5873 . . . . . 6  |-  ( n  =  suc  z  -> 
( A  +o  n
)  =  ( A  +o  suc  z ) )
1413fveq2d 5511 . . . . 5  |-  ( n  =  suc  z  -> 
( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  suc  z
) ) )
15 fveq2 5507 . . . . . 6  |-  ( n  =  suc  z  -> 
( G `  n
)  =  ( G `
 suc  z )
)
1615oveq2d 5881 . . . . 5  |-  ( n  =  suc  z  -> 
( ( G `  A )  +  ( G `  n ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) )
1714, 16eqeq12d 2190 . . . 4  |-  ( n  =  suc  z  -> 
( ( G `  ( A  +o  n
) )  =  ( ( G `  A
)  +  ( G `
 n ) )  <-> 
( G `  ( A  +o  suc  z ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) ) )
1817imbi2d 230 . . 3  |-  ( n  =  suc  z  -> 
( ( A  e. 
om  ->  ( G `  ( A  +o  n
) )  =  ( ( G `  A
)  +  ( G `
 n ) ) )  <->  ( A  e. 
om  ->  ( G `  ( A  +o  suc  z
) )  =  ( ( G `  A
)  +  ( G `
 suc  z )
) ) ) )
19 oveq2 5873 . . . . . 6  |-  ( n  =  B  ->  ( A  +o  n )  =  ( A  +o  B
) )
2019fveq2d 5511 . . . . 5  |-  ( n  =  B  ->  ( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  B ) ) )
21 fveq2 5507 . . . . . 6  |-  ( n  =  B  ->  ( G `  n )  =  ( G `  B ) )
2221oveq2d 5881 . . . . 5  |-  ( n  =  B  ->  (
( G `  A
)  +  ( G `
 n ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )
2320, 22eqeq12d 2190 . . . 4  |-  ( n  =  B  ->  (
( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  B
) )  =  ( ( G `  A
)  +  ( G `
 B ) ) ) )
2423imbi2d 230 . . 3  |-  ( n  =  B  ->  (
( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  B
) )  =  ( ( G `  A
)  +  ( G `
 B ) ) ) ) )
25 omgadd.1 . . . . . . . . 9  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
2625frechashgf1o 10396 . . . . . . . 8  |-  G : om
-1-1-onto-> NN0
27 f1of 5453 . . . . . . . 8  |-  ( G : om -1-1-onto-> NN0  ->  G : om
--> NN0 )
2826, 27ax-mp 5 . . . . . . 7  |-  G : om
--> NN0
2928ffvelcdmi 5642 . . . . . 6  |-  ( A  e.  om  ->  ( G `  A )  e.  NN0 )
3029nn0cnd 9202 . . . . 5  |-  ( A  e.  om  ->  ( G `  A )  e.  CC )
3130addid1d 8080 . . . 4  |-  ( A  e.  om  ->  (
( G `  A
)  +  0 )  =  ( G `  A ) )
32 0zd 9236 . . . . . 6  |-  ( A  e.  om  ->  0  e.  ZZ )
3332, 25frec2uz0d 10367 . . . . 5  |-  ( A  e.  om  ->  ( G `  (/) )  =  0 )
3433oveq2d 5881 . . . 4  |-  ( A  e.  om  ->  (
( G `  A
)  +  ( G `
 (/) ) )  =  ( ( G `  A )  +  0 ) )
35 nna0 6465 . . . . 5  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
3635fveq2d 5511 . . . 4  |-  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( G `  A
) )
3731, 34, 363eqtr4rd 2219 . . 3  |-  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( ( G `  A )  +  ( G `  (/) ) ) )
38 nnasuc 6467 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( A  +o  suc  z )  =  suc  ( A  +o  z
) )
3938fveq2d 5511 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  ( A  +o  suc  z ) )  =  ( G `
 suc  ( A  +o  z ) ) )
40 0zd 9236 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  z  e.  om )  ->  0  e.  ZZ )
41 nnacl 6471 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( A  +o  z
)  e.  om )
4240, 25, 41frec2uzsucd 10369 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  suc  ( A  +o  z
) )  =  ( ( G `  ( A  +o  z ) )  +  1 ) )
4339, 42eqtrd 2208 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `  ( A  +o  z ) )  +  1 ) )
44433adant3 1017 . . . . . . 7  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 ( A  +o  z ) )  +  1 ) )
45303ad2ant1 1018 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  A )  e.  CC )
4628ffvelcdmi 5642 . . . . . . . . . . 11  |-  ( z  e.  om  ->  ( G `  z )  e.  NN0 )
4746nn0cnd 9202 . . . . . . . . . 10  |-  ( z  e.  om  ->  ( G `  z )  e.  CC )
48473ad2ant2 1019 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  z )  e.  CC )
49 1cnd 7948 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  1  e.  CC )
5045, 48, 49addassd 7954 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( ( G `  A )  +  ( G `  z ) )  +  1 )  =  ( ( G `
 A )  +  ( ( G `  z )  +  1 ) ) )
51 oveq1 5872 . . . . . . . . 9  |-  ( ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( ( G `
 A )  +  ( G `  z
) )  +  1 ) )
52513ad2ant3 1020 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( ( G `
 A )  +  ( G `  z
) )  +  1 ) )
53 0zd 9236 . . . . . . . . . . 11  |-  ( z  e.  om  ->  0  e.  ZZ )
54 id 19 . . . . . . . . . . 11  |-  ( z  e.  om  ->  z  e.  om )
5553, 25, 54frec2uzsucd 10369 . . . . . . . . . 10  |-  ( z  e.  om  ->  ( G `  suc  z )  =  ( ( G `
 z )  +  1 ) )
5655oveq2d 5881 . . . . . . . . 9  |-  ( z  e.  om  ->  (
( G `  A
)  +  ( G `
 suc  z )
)  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
57563ad2ant2 1019 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  A
)  +  ( G `
 suc  z )
)  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
5850, 52, 573eqtr4d 2218 . . . . . . 7  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( G `  A )  +  ( G `  suc  z
) ) )
5944, 58eqtrd 2208 . . . . . 6  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 A )  +  ( G `  suc  z ) ) )
60593expia 1205 . . . . 5  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) )  ->  ( G `  ( A  +o  suc  z
) )  =  ( ( G `  A
)  +  ( G `
 suc  z )
) ) )
6160expcom 116 . . . 4  |-  ( z  e.  om  ->  ( A  e.  om  ->  ( ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 A )  +  ( G `  suc  z ) ) ) ) )
6261a2d 26 . . 3  |-  ( z  e.  om  ->  (
( A  e.  om  ->  ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) ) )  -> 
( A  e.  om  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) ) ) )
636, 12, 18, 24, 37, 62finds 4593 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) ) )
6463impcom 125 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146   (/)c0 3420    |-> cmpt 4059   suc csuc 4359   omcom 4583   -->wf 5204   -1-1-onto->wf1o 5207   ` cfv 5208  (class class class)co 5865  freccfrec 6381    +o coa 6404   CCcc 7784   0cc0 7786   1c1 7787    + caddc 7789   NN0cn0 9147   ZZcz 9224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-oadd 6411  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8891  df-n0 9148  df-z 9225  df-uz 9500
This theorem is referenced by:  hashun  10751
  Copyright terms: Public domain W3C validator