ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omgadd Unicode version

Theorem omgadd 10911
Description: Mapping ordinal addition to integer addition. (Contributed by Jim Kingdon, 24-Feb-2022.)
Hypothesis
Ref Expression
omgadd.1  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
omgadd  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )

Proof of Theorem omgadd
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5933 . . . . . 6  |-  ( n  =  (/)  ->  ( A  +o  n )  =  ( A  +o  (/) ) )
21fveq2d 5565 . . . . 5  |-  ( n  =  (/)  ->  ( G `
 ( A  +o  n ) )  =  ( G `  ( A  +o  (/) ) ) )
3 fveq2 5561 . . . . . 6  |-  ( n  =  (/)  ->  ( G `
 n )  =  ( G `  (/) ) )
43oveq2d 5941 . . . . 5  |-  ( n  =  (/)  ->  ( ( G `  A )  +  ( G `  n ) )  =  ( ( G `  A )  +  ( G `  (/) ) ) )
52, 4eqeq12d 2211 . . . 4  |-  ( n  =  (/)  ->  ( ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  (/) ) )  =  ( ( G `
 A )  +  ( G `  (/) ) ) ) )
65imbi2d 230 . . 3  |-  ( n  =  (/)  ->  ( ( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( ( G `
 A )  +  ( G `  (/) ) ) ) ) )
7 oveq2 5933 . . . . . 6  |-  ( n  =  z  ->  ( A  +o  n )  =  ( A  +o  z
) )
87fveq2d 5565 . . . . 5  |-  ( n  =  z  ->  ( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  z ) ) )
9 fveq2 5561 . . . . . 6  |-  ( n  =  z  ->  ( G `  n )  =  ( G `  z ) )
109oveq2d 5941 . . . . 5  |-  ( n  =  z  ->  (
( G `  A
)  +  ( G `
 n ) )  =  ( ( G `
 A )  +  ( G `  z
) ) )
118, 10eqeq12d 2211 . . . 4  |-  ( n  =  z  ->  (
( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) ) ) )
1211imbi2d 230 . . 3  |-  ( n  =  z  ->  (
( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) ) ) ) )
13 oveq2 5933 . . . . . 6  |-  ( n  =  suc  z  -> 
( A  +o  n
)  =  ( A  +o  suc  z ) )
1413fveq2d 5565 . . . . 5  |-  ( n  =  suc  z  -> 
( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  suc  z
) ) )
15 fveq2 5561 . . . . . 6  |-  ( n  =  suc  z  -> 
( G `  n
)  =  ( G `
 suc  z )
)
1615oveq2d 5941 . . . . 5  |-  ( n  =  suc  z  -> 
( ( G `  A )  +  ( G `  n ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) )
1714, 16eqeq12d 2211 . . . 4  |-  ( n  =  suc  z  -> 
( ( G `  ( A  +o  n
) )  =  ( ( G `  A
)  +  ( G `
 n ) )  <-> 
( G `  ( A  +o  suc  z ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) ) )
1817imbi2d 230 . . 3  |-  ( n  =  suc  z  -> 
( ( A  e. 
om  ->  ( G `  ( A  +o  n
) )  =  ( ( G `  A
)  +  ( G `
 n ) ) )  <->  ( A  e. 
om  ->  ( G `  ( A  +o  suc  z
) )  =  ( ( G `  A
)  +  ( G `
 suc  z )
) ) ) )
19 oveq2 5933 . . . . . 6  |-  ( n  =  B  ->  ( A  +o  n )  =  ( A  +o  B
) )
2019fveq2d 5565 . . . . 5  |-  ( n  =  B  ->  ( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  B ) ) )
21 fveq2 5561 . . . . . 6  |-  ( n  =  B  ->  ( G `  n )  =  ( G `  B ) )
2221oveq2d 5941 . . . . 5  |-  ( n  =  B  ->  (
( G `  A
)  +  ( G `
 n ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )
2320, 22eqeq12d 2211 . . . 4  |-  ( n  =  B  ->  (
( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  B
) )  =  ( ( G `  A
)  +  ( G `
 B ) ) ) )
2423imbi2d 230 . . 3  |-  ( n  =  B  ->  (
( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  B
) )  =  ( ( G `  A
)  +  ( G `
 B ) ) ) ) )
25 omgadd.1 . . . . . . . . 9  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
2625frechashgf1o 10537 . . . . . . . 8  |-  G : om
-1-1-onto-> NN0
27 f1of 5507 . . . . . . . 8  |-  ( G : om -1-1-onto-> NN0  ->  G : om
--> NN0 )
2826, 27ax-mp 5 . . . . . . 7  |-  G : om
--> NN0
2928ffvelcdmi 5699 . . . . . 6  |-  ( A  e.  om  ->  ( G `  A )  e.  NN0 )
3029nn0cnd 9321 . . . . 5  |-  ( A  e.  om  ->  ( G `  A )  e.  CC )
3130addridd 8192 . . . 4  |-  ( A  e.  om  ->  (
( G `  A
)  +  0 )  =  ( G `  A ) )
32 0zd 9355 . . . . . 6  |-  ( A  e.  om  ->  0  e.  ZZ )
3332, 25frec2uz0d 10508 . . . . 5  |-  ( A  e.  om  ->  ( G `  (/) )  =  0 )
3433oveq2d 5941 . . . 4  |-  ( A  e.  om  ->  (
( G `  A
)  +  ( G `
 (/) ) )  =  ( ( G `  A )  +  0 ) )
35 nna0 6541 . . . . 5  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
3635fveq2d 5565 . . . 4  |-  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( G `  A
) )
3731, 34, 363eqtr4rd 2240 . . 3  |-  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( ( G `  A )  +  ( G `  (/) ) ) )
38 nnasuc 6543 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( A  +o  suc  z )  =  suc  ( A  +o  z
) )
3938fveq2d 5565 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  ( A  +o  suc  z ) )  =  ( G `
 suc  ( A  +o  z ) ) )
40 0zd 9355 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  z  e.  om )  ->  0  e.  ZZ )
41 nnacl 6547 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( A  +o  z
)  e.  om )
4240, 25, 41frec2uzsucd 10510 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  suc  ( A  +o  z
) )  =  ( ( G `  ( A  +o  z ) )  +  1 ) )
4339, 42eqtrd 2229 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `  ( A  +o  z ) )  +  1 ) )
44433adant3 1019 . . . . . . 7  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 ( A  +o  z ) )  +  1 ) )
45303ad2ant1 1020 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  A )  e.  CC )
4628ffvelcdmi 5699 . . . . . . . . . . 11  |-  ( z  e.  om  ->  ( G `  z )  e.  NN0 )
4746nn0cnd 9321 . . . . . . . . . 10  |-  ( z  e.  om  ->  ( G `  z )  e.  CC )
48473ad2ant2 1021 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  z )  e.  CC )
49 1cnd 8059 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  1  e.  CC )
5045, 48, 49addassd 8066 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( ( G `  A )  +  ( G `  z ) )  +  1 )  =  ( ( G `
 A )  +  ( ( G `  z )  +  1 ) ) )
51 oveq1 5932 . . . . . . . . 9  |-  ( ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( ( G `
 A )  +  ( G `  z
) )  +  1 ) )
52513ad2ant3 1022 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( ( G `
 A )  +  ( G `  z
) )  +  1 ) )
53 0zd 9355 . . . . . . . . . . 11  |-  ( z  e.  om  ->  0  e.  ZZ )
54 id 19 . . . . . . . . . . 11  |-  ( z  e.  om  ->  z  e.  om )
5553, 25, 54frec2uzsucd 10510 . . . . . . . . . 10  |-  ( z  e.  om  ->  ( G `  suc  z )  =  ( ( G `
 z )  +  1 ) )
5655oveq2d 5941 . . . . . . . . 9  |-  ( z  e.  om  ->  (
( G `  A
)  +  ( G `
 suc  z )
)  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
57563ad2ant2 1021 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  A
)  +  ( G `
 suc  z )
)  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
5850, 52, 573eqtr4d 2239 . . . . . . 7  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( G `  A )  +  ( G `  suc  z
) ) )
5944, 58eqtrd 2229 . . . . . 6  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 A )  +  ( G `  suc  z ) ) )
60593expia 1207 . . . . 5  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) )  ->  ( G `  ( A  +o  suc  z
) )  =  ( ( G `  A
)  +  ( G `
 suc  z )
) ) )
6160expcom 116 . . . 4  |-  ( z  e.  om  ->  ( A  e.  om  ->  ( ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 A )  +  ( G `  suc  z ) ) ) ) )
6261a2d 26 . . 3  |-  ( z  e.  om  ->  (
( A  e.  om  ->  ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) ) )  -> 
( A  e.  om  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) ) ) )
636, 12, 18, 24, 37, 62finds 4637 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) ) )
6463impcom 125 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   (/)c0 3451    |-> cmpt 4095   suc csuc 4401   omcom 4627   -->wf 5255   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925  freccfrec 6457    +o coa 6480   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899   NN0cn0 9266   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-oadd 6487  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619
This theorem is referenced by:  hashun  10914
  Copyright terms: Public domain W3C validator