ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omgadd Unicode version

Theorem omgadd 10737
Description: Mapping ordinal addition to integer addition. (Contributed by Jim Kingdon, 24-Feb-2022.)
Hypothesis
Ref Expression
omgadd.1  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
omgadd  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )

Proof of Theorem omgadd
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5861 . . . . . 6  |-  ( n  =  (/)  ->  ( A  +o  n )  =  ( A  +o  (/) ) )
21fveq2d 5500 . . . . 5  |-  ( n  =  (/)  ->  ( G `
 ( A  +o  n ) )  =  ( G `  ( A  +o  (/) ) ) )
3 fveq2 5496 . . . . . 6  |-  ( n  =  (/)  ->  ( G `
 n )  =  ( G `  (/) ) )
43oveq2d 5869 . . . . 5  |-  ( n  =  (/)  ->  ( ( G `  A )  +  ( G `  n ) )  =  ( ( G `  A )  +  ( G `  (/) ) ) )
52, 4eqeq12d 2185 . . . 4  |-  ( n  =  (/)  ->  ( ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  (/) ) )  =  ( ( G `
 A )  +  ( G `  (/) ) ) ) )
65imbi2d 229 . . 3  |-  ( n  =  (/)  ->  ( ( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( ( G `
 A )  +  ( G `  (/) ) ) ) ) )
7 oveq2 5861 . . . . . 6  |-  ( n  =  z  ->  ( A  +o  n )  =  ( A  +o  z
) )
87fveq2d 5500 . . . . 5  |-  ( n  =  z  ->  ( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  z ) ) )
9 fveq2 5496 . . . . . 6  |-  ( n  =  z  ->  ( G `  n )  =  ( G `  z ) )
109oveq2d 5869 . . . . 5  |-  ( n  =  z  ->  (
( G `  A
)  +  ( G `
 n ) )  =  ( ( G `
 A )  +  ( G `  z
) ) )
118, 10eqeq12d 2185 . . . 4  |-  ( n  =  z  ->  (
( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) ) ) )
1211imbi2d 229 . . 3  |-  ( n  =  z  ->  (
( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) ) ) ) )
13 oveq2 5861 . . . . . 6  |-  ( n  =  suc  z  -> 
( A  +o  n
)  =  ( A  +o  suc  z ) )
1413fveq2d 5500 . . . . 5  |-  ( n  =  suc  z  -> 
( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  suc  z
) ) )
15 fveq2 5496 . . . . . 6  |-  ( n  =  suc  z  -> 
( G `  n
)  =  ( G `
 suc  z )
)
1615oveq2d 5869 . . . . 5  |-  ( n  =  suc  z  -> 
( ( G `  A )  +  ( G `  n ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) )
1714, 16eqeq12d 2185 . . . 4  |-  ( n  =  suc  z  -> 
( ( G `  ( A  +o  n
) )  =  ( ( G `  A
)  +  ( G `
 n ) )  <-> 
( G `  ( A  +o  suc  z ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) ) )
1817imbi2d 229 . . 3  |-  ( n  =  suc  z  -> 
( ( A  e. 
om  ->  ( G `  ( A  +o  n
) )  =  ( ( G `  A
)  +  ( G `
 n ) ) )  <->  ( A  e. 
om  ->  ( G `  ( A  +o  suc  z
) )  =  ( ( G `  A
)  +  ( G `
 suc  z )
) ) ) )
19 oveq2 5861 . . . . . 6  |-  ( n  =  B  ->  ( A  +o  n )  =  ( A  +o  B
) )
2019fveq2d 5500 . . . . 5  |-  ( n  =  B  ->  ( G `  ( A  +o  n ) )  =  ( G `  ( A  +o  B ) ) )
21 fveq2 5496 . . . . . 6  |-  ( n  =  B  ->  ( G `  n )  =  ( G `  B ) )
2221oveq2d 5869 . . . . 5  |-  ( n  =  B  ->  (
( G `  A
)  +  ( G `
 n ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )
2320, 22eqeq12d 2185 . . . 4  |-  ( n  =  B  ->  (
( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) )  <->  ( G `  ( A  +o  B
) )  =  ( ( G `  A
)  +  ( G `
 B ) ) ) )
2423imbi2d 229 . . 3  |-  ( n  =  B  ->  (
( A  e.  om  ->  ( G `  ( A  +o  n ) )  =  ( ( G `
 A )  +  ( G `  n
) ) )  <->  ( A  e.  om  ->  ( G `  ( A  +o  B
) )  =  ( ( G `  A
)  +  ( G `
 B ) ) ) ) )
25 omgadd.1 . . . . . . . . 9  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
2625frechashgf1o 10384 . . . . . . . 8  |-  G : om
-1-1-onto-> NN0
27 f1of 5442 . . . . . . . 8  |-  ( G : om -1-1-onto-> NN0  ->  G : om
--> NN0 )
2826, 27ax-mp 5 . . . . . . 7  |-  G : om
--> NN0
2928ffvelrni 5630 . . . . . 6  |-  ( A  e.  om  ->  ( G `  A )  e.  NN0 )
3029nn0cnd 9190 . . . . 5  |-  ( A  e.  om  ->  ( G `  A )  e.  CC )
3130addid1d 8068 . . . 4  |-  ( A  e.  om  ->  (
( G `  A
)  +  0 )  =  ( G `  A ) )
32 0zd 9224 . . . . . 6  |-  ( A  e.  om  ->  0  e.  ZZ )
3332, 25frec2uz0d 10355 . . . . 5  |-  ( A  e.  om  ->  ( G `  (/) )  =  0 )
3433oveq2d 5869 . . . 4  |-  ( A  e.  om  ->  (
( G `  A
)  +  ( G `
 (/) ) )  =  ( ( G `  A )  +  0 ) )
35 nna0 6453 . . . . 5  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
3635fveq2d 5500 . . . 4  |-  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( G `  A
) )
3731, 34, 363eqtr4rd 2214 . . 3  |-  ( A  e.  om  ->  ( G `  ( A  +o  (/) ) )  =  ( ( G `  A )  +  ( G `  (/) ) ) )
38 nnasuc 6455 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( A  +o  suc  z )  =  suc  ( A  +o  z
) )
3938fveq2d 5500 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  ( A  +o  suc  z ) )  =  ( G `
 suc  ( A  +o  z ) ) )
40 0zd 9224 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  z  e.  om )  ->  0  e.  ZZ )
41 nnacl 6459 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( A  +o  z
)  e.  om )
4240, 25, 41frec2uzsucd 10357 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  suc  ( A  +o  z
) )  =  ( ( G `  ( A  +o  z ) )  +  1 ) )
4339, 42eqtrd 2203 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `  ( A  +o  z ) )  +  1 ) )
44433adant3 1012 . . . . . . 7  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 ( A  +o  z ) )  +  1 ) )
45303ad2ant1 1013 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  A )  e.  CC )
4628ffvelrni 5630 . . . . . . . . . . 11  |-  ( z  e.  om  ->  ( G `  z )  e.  NN0 )
4746nn0cnd 9190 . . . . . . . . . 10  |-  ( z  e.  om  ->  ( G `  z )  e.  CC )
48473ad2ant2 1014 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  z )  e.  CC )
49 1cnd 7936 . . . . . . . . 9  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  1  e.  CC )
5045, 48, 49addassd 7942 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( ( G `  A )  +  ( G `  z ) )  +  1 )  =  ( ( G `
 A )  +  ( ( G `  z )  +  1 ) ) )
51 oveq1 5860 . . . . . . . . 9  |-  ( ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( ( G `
 A )  +  ( G `  z
) )  +  1 ) )
52513ad2ant3 1015 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( ( G `
 A )  +  ( G `  z
) )  +  1 ) )
53 0zd 9224 . . . . . . . . . . 11  |-  ( z  e.  om  ->  0  e.  ZZ )
54 id 19 . . . . . . . . . . 11  |-  ( z  e.  om  ->  z  e.  om )
5553, 25, 54frec2uzsucd 10357 . . . . . . . . . 10  |-  ( z  e.  om  ->  ( G `  suc  z )  =  ( ( G `
 z )  +  1 ) )
5655oveq2d 5869 . . . . . . . . 9  |-  ( z  e.  om  ->  (
( G `  A
)  +  ( G `
 suc  z )
)  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
57563ad2ant2 1014 . . . . . . . 8  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  A
)  +  ( G `
 suc  z )
)  =  ( ( G `  A )  +  ( ( G `
 z )  +  1 ) ) )
5850, 52, 573eqtr4d 2213 . . . . . . 7  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  (
( G `  ( A  +o  z ) )  +  1 )  =  ( ( G `  A )  +  ( G `  suc  z
) ) )
5944, 58eqtrd 2203 . . . . . 6  |-  ( ( A  e.  om  /\  z  e.  om  /\  ( G `  ( A  +o  z ) )  =  ( ( G `  A )  +  ( G `  z ) ) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 A )  +  ( G `  suc  z ) ) )
60593expia 1200 . . . . 5  |-  ( ( A  e.  om  /\  z  e.  om )  ->  ( ( G `  ( A  +o  z
) )  =  ( ( G `  A
)  +  ( G `
 z ) )  ->  ( G `  ( A  +o  suc  z
) )  =  ( ( G `  A
)  +  ( G `
 suc  z )
) ) )
6160expcom 115 . . . 4  |-  ( z  e.  om  ->  ( A  e.  om  ->  ( ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) )  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `
 A )  +  ( G `  suc  z ) ) ) ) )
6261a2d 26 . . 3  |-  ( z  e.  om  ->  (
( A  e.  om  ->  ( G `  ( A  +o  z ) )  =  ( ( G `
 A )  +  ( G `  z
) ) )  -> 
( A  e.  om  ->  ( G `  ( A  +o  suc  z ) )  =  ( ( G `  A )  +  ( G `  suc  z ) ) ) ) )
636, 12, 18, 24, 37, 62finds 4584 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) ) )
6463impcom 124 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( G `  ( A  +o  B ) )  =  ( ( G `
 A )  +  ( G `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   (/)c0 3414    |-> cmpt 4050   suc csuc 4350   omcom 4574   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853  freccfrec 6369    +o coa 6392   CCcc 7772   0cc0 7774   1c1 7775    + caddc 7777   NN0cn0 9135   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-oadd 6399  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488
This theorem is referenced by:  hashun  10740
  Copyright terms: Public domain W3C validator