ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsub2 Unicode version

Theorem subsub2 8203
Description: Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subsub2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) ) )

Proof of Theorem subsub2
StepHypRef Expression
1 subcl 8174 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C
)  e.  CC )
213adant1 1017 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C )  e.  CC )
3 simp1 999 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
4 simp3 1001 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
5 simp2 1000 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  B  e.  CC )
6 subcl 8174 . . . . 5  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  -  B
)  e.  CC )
74, 5, 6syl2anc 411 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  -  B )  e.  CC )
82, 3, 7add12d 8142 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  -  C
)  +  ( A  +  ( C  -  B ) ) )  =  ( A  +  ( ( B  -  C )  +  ( C  -  B ) ) ) )
9 npncan2 8202 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( ( B  -  C )  +  ( C  -  B ) )  =  0 )
1093adant1 1017 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  -  C
)  +  ( C  -  B ) )  =  0 )
1110oveq2d 5907 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( ( B  -  C )  +  ( C  -  B ) ) )  =  ( A  + 
0 ) )
123addid1d 8124 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  0 )  =  A )
138, 11, 123eqtrd 2226 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  -  C
)  +  ( A  +  ( C  -  B ) ) )  =  A )
143, 7addcld 7995 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( C  -  B ) )  e.  CC )
15 subadd 8178 . . 3  |-  ( ( A  e.  CC  /\  ( B  -  C
)  e.  CC  /\  ( A  +  ( C  -  B )
)  e.  CC )  ->  ( ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) )  <->  ( ( B  -  C )  +  ( A  +  ( C  -  B ) ) )  =  A ) )
163, 2, 14, 15syl3anc 1249 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  ( B  -  C )
)  =  ( A  +  ( C  -  B ) )  <->  ( ( B  -  C )  +  ( A  +  ( C  -  B
) ) )  =  A ) )
1713, 16mpbird 167 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160  (class class class)co 5891   CCcc 7827   0cc0 7829    + caddc 7832    - cmin 8146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-setind 4551  ax-resscn 7921  ax-1cn 7922  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-distr 7933  ax-i2m1 7934  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-sub 8148
This theorem is referenced by:  nncan  8204  subsub  8205  subsub3  8207  ppncan  8217  subadd4  8219  subsub2d  8315
  Copyright terms: Public domain W3C validator