ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc3 Unicode version

Theorem resqrexlemcalc3 10980
Description: Lemma for resqrex 10990. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcalc3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemcalc3
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5496 . . . . . . 7  |-  ( w  =  1  ->  ( F `  w )  =  ( F ` 
1 ) )
21oveq1d 5868 . . . . . 6  |-  ( w  =  1  ->  (
( F `  w
) ^ 2 )  =  ( ( F `
 1 ) ^
2 ) )
32oveq1d 5868 . . . . 5  |-  ( w  =  1  ->  (
( ( F `  w ) ^ 2 )  -  A )  =  ( ( ( F `  1 ) ^ 2 )  -  A ) )
4 oveq1 5860 . . . . . . 7  |-  ( w  =  1  ->  (
w  -  1 )  =  ( 1  -  1 ) )
54oveq2d 5869 . . . . . 6  |-  ( w  =  1  ->  (
4 ^ ( w  -  1 ) )  =  ( 4 ^ ( 1  -  1 ) ) )
65oveq2d 5869 . . . . 5  |-  ( w  =  1  ->  (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( w  - 
1 ) ) )  =  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
1  -  1 ) ) ) )
73, 6breq12d 4002 . . . 4  |-  ( w  =  1  ->  (
( ( ( F `
 w ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( w  -  1 ) ) )  <->  ( (
( F `  1
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( 1  -  1 ) ) ) ) )
87imbi2d 229 . . 3  |-  ( w  =  1  ->  (
( ph  ->  ( ( ( F `  w
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( w  -  1 ) ) ) )  <->  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( 1  -  1 ) ) ) ) ) )
9 fveq2 5496 . . . . . . 7  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
109oveq1d 5868 . . . . . 6  |-  ( w  =  k  ->  (
( F `  w
) ^ 2 )  =  ( ( F `
 k ) ^
2 ) )
1110oveq1d 5868 . . . . 5  |-  ( w  =  k  ->  (
( ( F `  w ) ^ 2 )  -  A )  =  ( ( ( F `  k ) ^ 2 )  -  A ) )
12 oveq1 5860 . . . . . . 7  |-  ( w  =  k  ->  (
w  -  1 )  =  ( k  - 
1 ) )
1312oveq2d 5869 . . . . . 6  |-  ( w  =  k  ->  (
4 ^ ( w  -  1 ) )  =  ( 4 ^ ( k  -  1 ) ) )
1413oveq2d 5869 . . . . 5  |-  ( w  =  k  ->  (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( w  - 
1 ) ) )  =  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )
1511, 14breq12d 4002 . . . 4  |-  ( w  =  k  ->  (
( ( ( F `
 w ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( w  -  1 ) ) )  <->  ( (
( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) ) )
1615imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( ( ( F `  w
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( w  -  1 ) ) ) )  <->  ( ph  ->  ( ( ( F `
 k ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) ) ) ) )
17 fveq2 5496 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
1817oveq1d 5868 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( F `  w
) ^ 2 )  =  ( ( F `
 ( k  +  1 ) ) ^
2 ) )
1918oveq1d 5868 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( ( F `  w ) ^ 2 )  -  A )  =  ( ( ( F `  ( k  +  1 ) ) ^ 2 )  -  A ) )
20 oveq1 5860 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
w  -  1 )  =  ( ( k  +  1 )  - 
1 ) )
2120oveq2d 5869 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
4 ^ ( w  -  1 ) )  =  ( 4 ^ ( ( k  +  1 )  -  1 ) ) )
2221oveq2d 5869 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( w  - 
1 ) ) )  =  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
( k  +  1 )  -  1 ) ) ) )
2319, 22breq12d 4002 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( ( F `
 w ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( w  -  1 ) ) )  <->  ( (
( F `  (
k  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( ( k  +  1 )  -  1 ) ) ) ) )
2423imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( ( ( F `  w
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( w  -  1 ) ) ) )  <->  ( ph  ->  ( ( ( F `
 ( k  +  1 ) ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( ( k  +  1 )  -  1 ) ) ) ) ) )
25 fveq2 5496 . . . . . . 7  |-  ( w  =  N  ->  ( F `  w )  =  ( F `  N ) )
2625oveq1d 5868 . . . . . 6  |-  ( w  =  N  ->  (
( F `  w
) ^ 2 )  =  ( ( F `
 N ) ^
2 ) )
2726oveq1d 5868 . . . . 5  |-  ( w  =  N  ->  (
( ( F `  w ) ^ 2 )  -  A )  =  ( ( ( F `  N ) ^ 2 )  -  A ) )
28 oveq1 5860 . . . . . . 7  |-  ( w  =  N  ->  (
w  -  1 )  =  ( N  - 
1 ) )
2928oveq2d 5869 . . . . . 6  |-  ( w  =  N  ->  (
4 ^ ( w  -  1 ) )  =  ( 4 ^ ( N  -  1 ) ) )
3029oveq2d 5869 . . . . 5  |-  ( w  =  N  ->  (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( w  - 
1 ) ) )  =  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) ) )
3127, 30breq12d 4002 . . . 4  |-  ( w  =  N  ->  (
( ( ( F `
 w ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( w  -  1 ) ) )  <->  ( (
( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) ) ) )
3231imbi2d 229 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( ( ( F `  w
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( w  -  1 ) ) ) )  <->  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) ) ) )
33 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3433renegcld 8299 . . . . . 6  |-  ( ph  -> 
-u A  e.  RR )
35 0red 7921 . . . . . 6  |-  ( ph  ->  0  e.  RR )
36 resqrexlemex.seq . . . . . . . . . 10  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
37 resqrexlemex.agt0 . . . . . . . . . 10  |-  ( ph  ->  0  <_  A )
3836, 33, 37resqrexlemf 10971 . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR+ )
39 1nn 8889 . . . . . . . . . 10  |-  1  e.  NN
4039a1i 9 . . . . . . . . 9  |-  ( ph  ->  1  e.  NN )
4138, 40ffvelrnd 5632 . . . . . . . 8  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
4241rpred 9653 . . . . . . 7  |-  ( ph  ->  ( F `  1
)  e.  RR )
4342resqcld 10635 . . . . . 6  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR )
4433le0neg2d 8437 . . . . . . 7  |-  ( ph  ->  ( 0  <_  A  <->  -u A  <_  0 ) )
4537, 44mpbid 146 . . . . . 6  |-  ( ph  -> 
-u A  <_  0
)
4634, 35, 43, 45leadd2dd 8479 . . . . 5  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  +  -u A )  <_  (
( ( F ` 
1 ) ^ 2 )  +  0 ) )
4743recnd 7948 . . . . . 6  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  CC )
4833recnd 7948 . . . . . 6  |-  ( ph  ->  A  e.  CC )
4947, 48negsubd 8236 . . . . 5  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  +  -u A )  =  ( ( ( F ` 
1 ) ^ 2 )  -  A ) )
5047addid1d 8068 . . . . 5  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  +  0 )  =  ( ( F `  1 ) ^ 2 ) )
5146, 49, 503brtr3d 4020 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  -  A
)  <_  ( ( F `  1 ) ^ 2 ) )
52 1m1e0 8947 . . . . . . . 8  |-  ( 1  -  1 )  =  0
5352oveq2i 5864 . . . . . . 7  |-  ( 4 ^ ( 1  -  1 ) )  =  ( 4 ^ 0 )
54 4cn 8956 . . . . . . . 8  |-  4  e.  CC
55 exp0 10480 . . . . . . . 8  |-  ( 4  e.  CC  ->  (
4 ^ 0 )  =  1 )
5654, 55ax-mp 5 . . . . . . 7  |-  ( 4 ^ 0 )  =  1
5753, 56eqtri 2191 . . . . . 6  |-  ( 4 ^ ( 1  -  1 ) )  =  1
5857oveq2i 5864 . . . . 5  |-  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( 1  -  1 ) ) )  =  ( ( ( F `
 1 ) ^
2 )  /  1
)
5947div1d 8697 . . . . 5  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  1
)  =  ( ( F `  1 ) ^ 2 ) )
6058, 59eqtrid 2215 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( 1  -  1 ) ) )  =  ( ( F `  1 ) ^ 2 ) )
6151, 60breqtrrd 4017 . . 3  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( 1  -  1 ) ) ) )
6238adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  F : NN
--> RR+ )
63 peano2nn 8890 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
6463adantl 275 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  NN )
6562, 64ffvelrnd 5632 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  e.  RR+ )
6665rpred 9653 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  e.  RR )
6766resqcld 10635 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  ( k  +  1 ) ) ^ 2 )  e.  RR )
6833adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  RR )
6967, 68resubcld 8300 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  (
k  +  1 ) ) ^ 2 )  -  A )  e.  RR )
7069adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( F `
 ( k  +  1 ) ) ^
2 )  -  A
)  e.  RR )
7138ffvelrnda 5631 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR+ )
7271rpred 9653 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
7372resqcld 10635 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) ^ 2 )  e.  RR )
7473, 68resubcld 8300 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  k
) ^ 2 )  -  A )  e.  RR )
75 4re 8955 . . . . . . . . . . . 12  |-  4  e.  RR
7675a1i 9 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  4  e.  RR )
77 4pos 8975 . . . . . . . . . . . 12  |-  0  <  4
7877a1i 9 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  0  <  4 )
7976, 78elrpd 9650 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  4  e.  RR+ )
8074, 79rerpdivcld 9685 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( F `  k ) ^ 2 )  -  A )  /  4 )  e.  RR )
8180adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( ( F `  k ) ^ 2 )  -  A )  /  4
)  e.  RR )
8243adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  1 ) ^ 2 )  e.  RR )
83 nnz 9231 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  k  e.  ZZ )
84 peano2zm 9250 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
8583, 84syl 14 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  ZZ )
8685adantl 275 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  -  1 )  e.  ZZ )
8779, 86rpexpcld 10633 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( 4 ^ ( k  - 
1 ) )  e.  RR+ )
8882, 87rerpdivcld 9685 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) )  e.  RR )
8988, 79rerpdivcld 9685 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( k  - 
1 ) ) )  /  4 )  e.  RR )
9089adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) )  /  4
)  e.  RR )
9136, 33, 37resqrexlemcalc2 10979 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  (
k  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( ( F `  k ) ^ 2 )  -  A )  /  4
) )
9291adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( F `
 ( k  +  1 ) ) ^
2 )  -  A
)  <_  ( (
( ( F `  k ) ^ 2 )  -  A )  /  4 ) )
9374, 88, 79lediv1d 9700 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) )  <->  ( (
( ( F `  k ) ^ 2 )  -  A )  /  4 )  <_ 
( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) )  /  4
) ) )
9493biimpa 294 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( ( F `  k ) ^ 2 )  -  A )  /  4
)  <_  ( (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( k  - 
1 ) ) )  /  4 ) )
9570, 81, 90, 92, 94letrd 8043 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( F `
 ( k  +  1 ) ) ^
2 )  -  A
)  <_  ( (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( k  - 
1 ) ) )  /  4 ) )
9647ad2antrr 485 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( F ` 
1 ) ^ 2 )  e.  CC )
9787adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( 4 ^ (
k  -  1 ) )  e.  RR+ )
9897rpcnd 9655 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( 4 ^ (
k  -  1 ) )  e.  CC )
9954a1i 9 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
4  e.  CC )
10097rpap0d 9659 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( 4 ^ (
k  -  1 ) ) #  0 )
10179adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
4  e.  RR+ )
102101rpap0d 9659 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
4 #  0 )
10396, 98, 99, 100, 102divdivap1d 8739 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) )  /  4
)  =  ( ( ( F `  1
) ^ 2 )  /  ( ( 4 ^ ( k  - 
1 ) )  x.  4 ) ) )
104 simpr 109 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
105104nncnd 8892 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  CC )
106 pncan1 8296 . . . . . . . . . . . . 13  |-  ( k  e.  CC  ->  (
( k  +  1 )  -  1 )  =  k )
107105, 106syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  +  1 )  -  1 )  =  k )
108107oveq2d 5869 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( 4 ^ ( ( k  +  1 )  - 
1 ) )  =  ( 4 ^ k
) )
109108adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( 4 ^ (
( k  +  1 )  -  1 ) )  =  ( 4 ^ k ) )
110 simplr 525 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
k  e.  NN )
111 expm1t 10504 . . . . . . . . . . 11  |-  ( ( 4  e.  CC  /\  k  e.  NN )  ->  ( 4 ^ k
)  =  ( ( 4 ^ ( k  -  1 ) )  x.  4 ) )
11254, 110, 111sylancr 412 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( 4 ^ k
)  =  ( ( 4 ^ ( k  -  1 ) )  x.  4 ) )
113109, 112eqtrd 2203 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( 4 ^ (
( k  +  1 )  -  1 ) )  =  ( ( 4 ^ ( k  -  1 ) )  x.  4 ) )
114113oveq2d 5869 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( ( k  +  1 )  -  1 ) ) )  =  ( ( ( F `  1
) ^ 2 )  /  ( ( 4 ^ ( k  - 
1 ) )  x.  4 ) ) )
115103, 114eqtr4d 2206 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) )  /  4
)  =  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( ( k  +  1 )  -  1 ) ) ) )
11695, 115breqtrd 4015 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( F `
 ( k  +  1 ) ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( ( k  +  1 )  -  1 ) ) ) )
117116ex 114 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) )  ->  (
( ( F `  ( k  +  1 ) ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
( k  +  1 )  -  1 ) ) ) ) )
118117expcom 115 . . . 4  |-  ( k  e.  NN  ->  ( ph  ->  ( ( ( ( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) )  ->  ( (
( F `  (
k  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( ( k  +  1 )  -  1 ) ) ) ) ) )
119118a2d 26 . . 3  |-  ( k  e.  NN  ->  (
( ph  ->  ( ( ( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) )  ->  ( ph  ->  ( ( ( F `  ( k  +  1 ) ) ^ 2 )  -  A )  <_  (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( ( k  +  1 )  - 
1 ) ) ) ) ) )
1208, 16, 24, 32, 61, 119nnind 8894 . 2  |-  ( N  e.  NN  ->  ( ph  ->  ( ( ( F `  N ) ^ 2 )  -  A )  <_  (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( N  - 
1 ) ) ) ) )
121120impcom 124 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {csn 3583   class class class wbr 3989    X. cxp 4609   -->wf 5194   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090   -ucneg 8091    / cdiv 8589   NNcn 8878   2c2 8929   4c4 8931   ZZcz 9212   RR+crp 9610    seqcseq 10401   ^cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  resqrexlemnmsq  10981  resqrexlemga  10987
  Copyright terms: Public domain W3C validator