ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc3 Unicode version

Theorem resqrexlemcalc3 11060
Description: Lemma for resqrex 11070. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcalc3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemcalc3
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5534 . . . . . . 7  |-  ( w  =  1  ->  ( F `  w )  =  ( F ` 
1 ) )
21oveq1d 5912 . . . . . 6  |-  ( w  =  1  ->  (
( F `  w
) ^ 2 )  =  ( ( F `
 1 ) ^
2 ) )
32oveq1d 5912 . . . . 5  |-  ( w  =  1  ->  (
( ( F `  w ) ^ 2 )  -  A )  =  ( ( ( F `  1 ) ^ 2 )  -  A ) )
4 oveq1 5904 . . . . . . 7  |-  ( w  =  1  ->  (
w  -  1 )  =  ( 1  -  1 ) )
54oveq2d 5913 . . . . . 6  |-  ( w  =  1  ->  (
4 ^ ( w  -  1 ) )  =  ( 4 ^ ( 1  -  1 ) ) )
65oveq2d 5913 . . . . 5  |-  ( w  =  1  ->  (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( w  - 
1 ) ) )  =  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
1  -  1 ) ) ) )
73, 6breq12d 4031 . . . 4  |-  ( w  =  1  ->  (
( ( ( F `
 w ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( w  -  1 ) ) )  <->  ( (
( F `  1
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( 1  -  1 ) ) ) ) )
87imbi2d 230 . . 3  |-  ( w  =  1  ->  (
( ph  ->  ( ( ( F `  w
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( w  -  1 ) ) ) )  <->  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( 1  -  1 ) ) ) ) ) )
9 fveq2 5534 . . . . . . 7  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
109oveq1d 5912 . . . . . 6  |-  ( w  =  k  ->  (
( F `  w
) ^ 2 )  =  ( ( F `
 k ) ^
2 ) )
1110oveq1d 5912 . . . . 5  |-  ( w  =  k  ->  (
( ( F `  w ) ^ 2 )  -  A )  =  ( ( ( F `  k ) ^ 2 )  -  A ) )
12 oveq1 5904 . . . . . . 7  |-  ( w  =  k  ->  (
w  -  1 )  =  ( k  - 
1 ) )
1312oveq2d 5913 . . . . . 6  |-  ( w  =  k  ->  (
4 ^ ( w  -  1 ) )  =  ( 4 ^ ( k  -  1 ) ) )
1413oveq2d 5913 . . . . 5  |-  ( w  =  k  ->  (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( w  - 
1 ) ) )  =  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )
1511, 14breq12d 4031 . . . 4  |-  ( w  =  k  ->  (
( ( ( F `
 w ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( w  -  1 ) ) )  <->  ( (
( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) ) )
1615imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( ( ( F `  w
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( w  -  1 ) ) ) )  <->  ( ph  ->  ( ( ( F `
 k ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) ) ) ) )
17 fveq2 5534 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
1817oveq1d 5912 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( F `  w
) ^ 2 )  =  ( ( F `
 ( k  +  1 ) ) ^
2 ) )
1918oveq1d 5912 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( ( F `  w ) ^ 2 )  -  A )  =  ( ( ( F `  ( k  +  1 ) ) ^ 2 )  -  A ) )
20 oveq1 5904 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
w  -  1 )  =  ( ( k  +  1 )  - 
1 ) )
2120oveq2d 5913 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
4 ^ ( w  -  1 ) )  =  ( 4 ^ ( ( k  +  1 )  -  1 ) ) )
2221oveq2d 5913 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( w  - 
1 ) ) )  =  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
( k  +  1 )  -  1 ) ) ) )
2319, 22breq12d 4031 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( ( F `
 w ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( w  -  1 ) ) )  <->  ( (
( F `  (
k  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( ( k  +  1 )  -  1 ) ) ) ) )
2423imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( ( ( F `  w
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( w  -  1 ) ) ) )  <->  ( ph  ->  ( ( ( F `
 ( k  +  1 ) ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( ( k  +  1 )  -  1 ) ) ) ) ) )
25 fveq2 5534 . . . . . . 7  |-  ( w  =  N  ->  ( F `  w )  =  ( F `  N ) )
2625oveq1d 5912 . . . . . 6  |-  ( w  =  N  ->  (
( F `  w
) ^ 2 )  =  ( ( F `
 N ) ^
2 ) )
2726oveq1d 5912 . . . . 5  |-  ( w  =  N  ->  (
( ( F `  w ) ^ 2 )  -  A )  =  ( ( ( F `  N ) ^ 2 )  -  A ) )
28 oveq1 5904 . . . . . . 7  |-  ( w  =  N  ->  (
w  -  1 )  =  ( N  - 
1 ) )
2928oveq2d 5913 . . . . . 6  |-  ( w  =  N  ->  (
4 ^ ( w  -  1 ) )  =  ( 4 ^ ( N  -  1 ) ) )
3029oveq2d 5913 . . . . 5  |-  ( w  =  N  ->  (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( w  - 
1 ) ) )  =  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) ) )
3127, 30breq12d 4031 . . . 4  |-  ( w  =  N  ->  (
( ( ( F `
 w ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( w  -  1 ) ) )  <->  ( (
( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) ) ) )
3231imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( ( ( F `  w
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( w  -  1 ) ) ) )  <->  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) ) ) )
33 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3433renegcld 8368 . . . . . 6  |-  ( ph  -> 
-u A  e.  RR )
35 0red 7989 . . . . . 6  |-  ( ph  ->  0  e.  RR )
36 resqrexlemex.seq . . . . . . . . . 10  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
37 resqrexlemex.agt0 . . . . . . . . . 10  |-  ( ph  ->  0  <_  A )
3836, 33, 37resqrexlemf 11051 . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR+ )
39 1nn 8961 . . . . . . . . . 10  |-  1  e.  NN
4039a1i 9 . . . . . . . . 9  |-  ( ph  ->  1  e.  NN )
4138, 40ffvelcdmd 5673 . . . . . . . 8  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
4241rpred 9728 . . . . . . 7  |-  ( ph  ->  ( F `  1
)  e.  RR )
4342resqcld 10714 . . . . . 6  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR )
4433le0neg2d 8506 . . . . . . 7  |-  ( ph  ->  ( 0  <_  A  <->  -u A  <_  0 ) )
4537, 44mpbid 147 . . . . . 6  |-  ( ph  -> 
-u A  <_  0
)
4634, 35, 43, 45leadd2dd 8548 . . . . 5  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  +  -u A )  <_  (
( ( F ` 
1 ) ^ 2 )  +  0 ) )
4743recnd 8017 . . . . . 6  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  CC )
4833recnd 8017 . . . . . 6  |-  ( ph  ->  A  e.  CC )
4947, 48negsubd 8305 . . . . 5  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  +  -u A )  =  ( ( ( F ` 
1 ) ^ 2 )  -  A ) )
5047addridd 8137 . . . . 5  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  +  0 )  =  ( ( F `  1 ) ^ 2 ) )
5146, 49, 503brtr3d 4049 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  -  A
)  <_  ( ( F `  1 ) ^ 2 ) )
52 1m1e0 9019 . . . . . . . 8  |-  ( 1  -  1 )  =  0
5352oveq2i 5908 . . . . . . 7  |-  ( 4 ^ ( 1  -  1 ) )  =  ( 4 ^ 0 )
54 4cn 9028 . . . . . . . 8  |-  4  e.  CC
55 exp0 10558 . . . . . . . 8  |-  ( 4  e.  CC  ->  (
4 ^ 0 )  =  1 )
5654, 55ax-mp 5 . . . . . . 7  |-  ( 4 ^ 0 )  =  1
5753, 56eqtri 2210 . . . . . 6  |-  ( 4 ^ ( 1  -  1 ) )  =  1
5857oveq2i 5908 . . . . 5  |-  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( 1  -  1 ) ) )  =  ( ( ( F `
 1 ) ^
2 )  /  1
)
5947div1d 8768 . . . . 5  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  1
)  =  ( ( F `  1 ) ^ 2 ) )
6058, 59eqtrid 2234 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( 1  -  1 ) ) )  =  ( ( F `  1 ) ^ 2 ) )
6151, 60breqtrrd 4046 . . 3  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( 1  -  1 ) ) ) )
6238adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  F : NN
--> RR+ )
63 peano2nn 8962 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
6463adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  +  1 )  e.  NN )
6562, 64ffvelcdmd 5673 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  e.  RR+ )
6665rpred 9728 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  e.  RR )
6766resqcld 10714 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  ( k  +  1 ) ) ^ 2 )  e.  RR )
6833adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  RR )
6967, 68resubcld 8369 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  (
k  +  1 ) ) ^ 2 )  -  A )  e.  RR )
7069adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( F `
 ( k  +  1 ) ) ^
2 )  -  A
)  e.  RR )
7138ffvelcdmda 5672 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR+ )
7271rpred 9728 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
7372resqcld 10714 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) ^ 2 )  e.  RR )
7473, 68resubcld 8369 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  k
) ^ 2 )  -  A )  e.  RR )
75 4re 9027 . . . . . . . . . . . 12  |-  4  e.  RR
7675a1i 9 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  4  e.  RR )
77 4pos 9047 . . . . . . . . . . . 12  |-  0  <  4
7877a1i 9 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  0  <  4 )
7976, 78elrpd 9725 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  4  e.  RR+ )
8074, 79rerpdivcld 9760 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( F `  k ) ^ 2 )  -  A )  /  4 )  e.  RR )
8180adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( ( F `  k ) ^ 2 )  -  A )  /  4
)  e.  RR )
8243adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  1 ) ^ 2 )  e.  RR )
83 nnz 9303 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  k  e.  ZZ )
84 peano2zm 9322 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
8583, 84syl 14 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  ZZ )
8685adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( k  -  1 )  e.  ZZ )
8779, 86rpexpcld 10712 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( 4 ^ ( k  - 
1 ) )  e.  RR+ )
8882, 87rerpdivcld 9760 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( k  -  1 ) ) )  e.  RR )
8988, 79rerpdivcld 9760 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( k  - 
1 ) ) )  /  4 )  e.  RR )
9089adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) )  /  4
)  e.  RR )
9136, 33, 37resqrexlemcalc2 11059 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  (
k  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( ( F `  k ) ^ 2 )  -  A )  /  4
) )
9291adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( F `
 ( k  +  1 ) ) ^
2 )  -  A
)  <_  ( (
( ( F `  k ) ^ 2 )  -  A )  /  4 ) )
9374, 88, 79lediv1d 9775 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) )  <->  ( (
( ( F `  k ) ^ 2 )  -  A )  /  4 )  <_ 
( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) )  /  4
) ) )
9493biimpa 296 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( ( F `  k ) ^ 2 )  -  A )  /  4
)  <_  ( (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( k  - 
1 ) ) )  /  4 ) )
9570, 81, 90, 92, 94letrd 8112 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( F `
 ( k  +  1 ) ) ^
2 )  -  A
)  <_  ( (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( k  - 
1 ) ) )  /  4 ) )
9647ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( F ` 
1 ) ^ 2 )  e.  CC )
9787adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( 4 ^ (
k  -  1 ) )  e.  RR+ )
9897rpcnd 9730 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( 4 ^ (
k  -  1 ) )  e.  CC )
9954a1i 9 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
4  e.  CC )
10097rpap0d 9734 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( 4 ^ (
k  -  1 ) ) #  0 )
10179adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
4  e.  RR+ )
102101rpap0d 9734 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
4 #  0 )
10396, 98, 99, 100, 102divdivap1d 8810 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) )  /  4
)  =  ( ( ( F `  1
) ^ 2 )  /  ( ( 4 ^ ( k  - 
1 ) )  x.  4 ) ) )
104 simpr 110 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
105104nncnd 8964 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  CC )
106 pncan1 8365 . . . . . . . . . . . . 13  |-  ( k  e.  CC  ->  (
( k  +  1 )  -  1 )  =  k )
107105, 106syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  +  1 )  -  1 )  =  k )
108107oveq2d 5913 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( 4 ^ ( ( k  +  1 )  - 
1 ) )  =  ( 4 ^ k
) )
109108adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( 4 ^ (
( k  +  1 )  -  1 ) )  =  ( 4 ^ k ) )
110 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
k  e.  NN )
111 expm1t 10582 . . . . . . . . . . 11  |-  ( ( 4  e.  CC  /\  k  e.  NN )  ->  ( 4 ^ k
)  =  ( ( 4 ^ ( k  -  1 ) )  x.  4 ) )
11254, 110, 111sylancr 414 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( 4 ^ k
)  =  ( ( 4 ^ ( k  -  1 ) )  x.  4 ) )
113109, 112eqtrd 2222 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( 4 ^ (
( k  +  1 )  -  1 ) )  =  ( ( 4 ^ ( k  -  1 ) )  x.  4 ) )
114113oveq2d 5913 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( ( k  +  1 )  -  1 ) ) )  =  ( ( ( F `  1
) ^ 2 )  /  ( ( 4 ^ ( k  - 
1 ) )  x.  4 ) ) )
115103, 114eqtr4d 2225 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) )  /  4
)  =  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( ( k  +  1 )  -  1 ) ) ) )
11695, 115breqtrd 4044 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) ) )  -> 
( ( ( F `
 ( k  +  1 ) ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( ( k  +  1 )  -  1 ) ) ) )
117116ex 115 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( F `  k ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
k  -  1 ) ) )  ->  (
( ( F `  ( k  +  1 ) ) ^ 2 )  -  A )  <_  ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ (
( k  +  1 )  -  1 ) ) ) ) )
118117expcom 116 . . . 4  |-  ( k  e.  NN  ->  ( ph  ->  ( ( ( ( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) )  ->  ( (
( F `  (
k  +  1 ) ) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( ( k  +  1 )  -  1 ) ) ) ) ) )
119118a2d 26 . . 3  |-  ( k  e.  NN  ->  (
( ph  ->  ( ( ( F `  k
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( k  -  1 ) ) ) )  ->  ( ph  ->  ( ( ( F `  ( k  +  1 ) ) ^ 2 )  -  A )  <_  (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( ( k  +  1 )  - 
1 ) ) ) ) ) )
1208, 16, 24, 32, 61, 119nnind 8966 . 2  |-  ( N  e.  NN  ->  ( ph  ->  ( ( ( F `  N ) ^ 2 )  -  A )  <_  (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( N  - 
1 ) ) ) ) )
121120impcom 125 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   {csn 3607   class class class wbr 4018    X. cxp 4642   -->wf 5231   ` cfv 5235  (class class class)co 5897    e. cmpo 5899   CCcc 7840   RRcr 7841   0cc0 7842   1c1 7843    + caddc 7845    x. cmul 7847    < clt 8023    <_ cle 8024    - cmin 8159   -ucneg 8160    / cdiv 8660   NNcn 8950   2c2 9001   4c4 9003   ZZcz 9284   RR+crp 9685    seqcseq 10478   ^cexp 10553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-rp 9686  df-seqfrec 10479  df-exp 10554
This theorem is referenced by:  resqrexlemnmsq  11061  resqrexlemga  11067
  Copyright terms: Public domain W3C validator