ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reim0b Unicode version

Theorem reim0b 10996
Description: A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.)
Assertion
Ref Expression
reim0b  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )

Proof of Theorem reim0b
StepHypRef Expression
1 reim0 10995 . 2  |-  ( A  e.  RR  ->  (
Im `  A )  =  0 )
2 replim 10993 . . . . . 6  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
32adantr 276 . . . . 5  |-  ( ( A  e.  CC  /\  ( Im `  A )  =  0 )  ->  A  =  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
4 oveq2 5918 . . . . . . . 8  |-  ( ( Im `  A )  =  0  ->  (
_i  x.  ( Im `  A ) )  =  ( _i  x.  0 ) )
5 it0e0 9193 . . . . . . . 8  |-  ( _i  x.  0 )  =  0
64, 5eqtrdi 2242 . . . . . . 7  |-  ( ( Im `  A )  =  0  ->  (
_i  x.  ( Im `  A ) )  =  0 )
76oveq2d 5926 . . . . . 6  |-  ( ( Im `  A )  =  0  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( Re
`  A )  +  0 ) )
8 recl 10987 . . . . . . . 8  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
98recnd 8038 . . . . . . 7  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
109addridd 8158 . . . . . 6  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  0 )  =  ( Re `  A ) )
117, 10sylan9eqr 2248 . . . . 5  |-  ( ( A  e.  CC  /\  ( Im `  A )  =  0 )  -> 
( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  =  ( Re
`  A ) )
123, 11eqtrd 2226 . . . 4  |-  ( ( A  e.  CC  /\  ( Im `  A )  =  0 )  ->  A  =  ( Re `  A ) )
138adantr 276 . . . 4  |-  ( ( A  e.  CC  /\  ( Im `  A )  =  0 )  -> 
( Re `  A
)  e.  RR )
1412, 13eqeltrd 2270 . . 3  |-  ( ( A  e.  CC  /\  ( Im `  A )  =  0 )  ->  A  e.  RR )
1514ex 115 . 2  |-  ( A  e.  CC  ->  (
( Im `  A
)  =  0  ->  A  e.  RR )
)
161, 15impbid2 143 1  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   ` cfv 5246  (class class class)co 5910   CCcc 7860   RRcr 7861   0cc0 7862   _ici 7864    + caddc 7865    x. cmul 7867   Recre 10974   Imcim 10975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-mulrcl 7961  ax-addcom 7962  ax-mulcom 7963  ax-addass 7964  ax-mulass 7965  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-1rid 7969  ax-0id 7970  ax-rnegex 7971  ax-precex 7972  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978  ax-pre-mulgt0 7979  ax-pre-mulext 7980
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-po 4325  df-iso 4326  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-reap 8584  df-ap 8591  df-div 8682  df-2 9031  df-cj 10976  df-re 10977  df-im 10978
This theorem is referenced by:  cjreb  11000  reim0bi  11050  reim0bd  11078  absefib  11904  efieq1re  11905
  Copyright terms: Public domain W3C validator