ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addge01 Unicode version

Theorem addge01 8615
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
addge01  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  A  <_  ( A  +  B ) ) )

Proof of Theorem addge01
StepHypRef Expression
1 0re 8142 . . . 4  |-  0  e.  RR
2 leadd2 8574 . . . 4  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
0  <_  B  <->  ( A  +  0 )  <_ 
( A  +  B
) ) )
31, 2mp3an1 1358 . . 3  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  B  <->  ( A  +  0 )  <_  ( A  +  B ) ) )
43ancoms 268 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  ( A  +  0 )  <_  ( A  +  B ) ) )
5 recn 8128 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
65addridd 8291 . . . 4  |-  ( A  e.  RR  ->  ( A  +  0 )  =  A )
76adantr 276 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  0 )  =  A )
87breq1d 4092 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  + 
0 )  <_  ( A  +  B )  <->  A  <_  ( A  +  B ) ) )
94, 8bitrd 188 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  A  <_  ( A  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   RRcr 7994   0cc0 7995    + caddc 7998    <_ cle 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-iota 5277  df-fv 5325  df-ov 6003  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183
This theorem is referenced by:  addge02  8616  subge02  8621  addge01d  8676  nn0addge1  9411  elfzmlbp  10324  fzoun  10375  flqbi2  10506
  Copyright terms: Public domain W3C validator