Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addge01 | Unicode version |
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 21-Feb-2005.) |
Ref | Expression |
---|---|
addge01 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7861 | . . . 4 | |
2 | leadd2 8289 | . . . 4 | |
3 | 1, 2 | mp3an1 1306 | . . 3 |
4 | 3 | ancoms 266 | . 2 |
5 | recn 7848 | . . . . 5 | |
6 | 5 | addid1d 8007 | . . . 4 |
7 | 6 | adantr 274 | . . 3 |
8 | 7 | breq1d 3975 | . 2 |
9 | 4, 8 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 class class class wbr 3965 (class class class)co 5818 cr 7714 cc0 7715 caddc 7718 cle 7896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-i2m1 7820 ax-0id 7823 ax-rnegex 7824 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4589 df-cnv 4591 df-iota 5132 df-fv 5175 df-ov 5821 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 |
This theorem is referenced by: addge02 8331 subge02 8336 addge01d 8391 nn0addge1 9119 elfzmlbp 10013 flqbi2 10172 |
Copyright terms: Public domain | W3C validator |