ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembz Unicode version

Theorem bezoutlembz 12018
Description: Lemma for Bézout's identity. Like bezoutlemaz 12017 but where ' B ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembz  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y    B, d, x, y   
z, A, d    z, B

Proof of Theorem bezoutlembz
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 bezoutlemaz 12017 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
21adantlr 477 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
3 bezoutlemaz 12017 . . . 4  |-  ( ( A  e.  ZZ  /\  -u B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) ) )
43adantlr 477 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) ) )
5 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  z  e.  ZZ )
6 simplr 528 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  B  e.  ZZ )
76ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  B  e.  ZZ )
8 dvdsnegb 11828 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  B  e.  ZZ )  ->  ( z  ||  B  <->  z 
||  -u B ) )
95, 7, 8syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  B  <->  z  ||  -u B ) )
109biimprd 158 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  -u B  -> 
z  ||  B )
)
1110anim2d 337 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  A  /\  z  ||  -u B
)  ->  ( z  ||  A  /\  z  ||  B ) ) )
1211imim2d 54 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) ) )
1312ralimdva 2554 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  ->  A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
146ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  B  e.  ZZ )
1514zcnd 9389 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  B  e.  CC )
16 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  ZZ )
1716zcnd 9389 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  CC )
18 mulneg12 8367 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  t  e.  CC )  ->  ( -u B  x.  t )  =  ( B  x.  -u t
) )
1915, 17, 18syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( -u B  x.  t )  =  ( B  x.  -u t ) )
2019oveq2d 5904 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
( A  x.  x
)  +  ( -u B  x.  t )
)  =  ( ( A  x.  x )  +  ( B  x.  -u t ) ) )
2120eqeq2d 2199 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  <->  d  =  ( ( A  x.  x )  +  ( B  x.  -u t
) ) ) )
22 znegcl 9297 . . . . . . . . . . 11  |-  ( t  e.  ZZ  ->  -u t  e.  ZZ )
23 oveq2 5896 . . . . . . . . . . . . . 14  |-  ( y  =  -u t  ->  ( B  x.  y )  =  ( B  x.  -u t ) )
2423oveq2d 5904 . . . . . . . . . . . . 13  |-  ( y  =  -u t  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  x )  +  ( B  x.  -u t
) ) )
2524eqeq2d 2199 . . . . . . . . . . . 12  |-  ( y  =  -u t  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  d  =  ( ( A  x.  x )  +  ( B  x.  -u t
) ) ) )
2625rspcev 2853 . . . . . . . . . . 11  |-  ( (
-u t  e.  ZZ  /\  d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
2722, 26sylan 283 . . . . . . . . . 10  |-  ( ( t  e.  ZZ  /\  d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
2827ex 115 . . . . . . . . 9  |-  ( t  e.  ZZ  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
2928adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
3021, 29sylbid 150 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
3130rexlimdva 2604 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
3231reximdv 2588 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3313, 32anim12d 335 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  (
( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3433reximdva 2589 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  ( E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
354, 34mpd 13 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
36 elznn0 9281 . . . 4  |-  ( B  e.  ZZ  <->  ( B  e.  RR  /\  ( B  e.  NN0  \/  -u B  e.  NN0 ) ) )
3736simprbi 275 . . 3  |-  ( B  e.  ZZ  ->  ( B  e.  NN0  \/  -u B  e.  NN0 ) )
3837adantl 277 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  e.  NN0  \/  -u B  e.  NN0 ) )
392, 35, 38mpjaodan 799 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1363    e. wcel 2158   A.wral 2465   E.wrex 2466   class class class wbr 4015  (class class class)co 5888   CCcc 7822   RRcr 7823    + caddc 7827    x. cmul 7829   -ucneg 8142   NN0cn0 9189   ZZcz 9266    || cdvds 11807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-fz 10022  df-fl 10283  df-mod 10336  df-seqfrec 10459  df-exp 10533  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-dvds 11808
This theorem is referenced by:  bezoutlembi  12019
  Copyright terms: Public domain W3C validator