ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembz Unicode version

Theorem bezoutlembz 11681
Description: Lemma for Bézout's identity. Like bezoutlemaz 11680 but where ' B ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembz  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y    B, d, x, y   
z, A, d    z, B

Proof of Theorem bezoutlembz
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 bezoutlemaz 11680 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
21adantlr 468 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
3 bezoutlemaz 11680 . . . 4  |-  ( ( A  e.  ZZ  /\  -u B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) ) )
43adantlr 468 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) ) )
5 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  z  e.  ZZ )
6 simplr 519 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  B  e.  ZZ )
76ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  B  e.  ZZ )
8 dvdsnegb 11499 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  B  e.  ZZ )  ->  ( z  ||  B  <->  z 
||  -u B ) )
95, 7, 8syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  B  <->  z  ||  -u B ) )
109biimprd 157 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  -u B  -> 
z  ||  B )
)
1110anim2d 335 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  A  /\  z  ||  -u B
)  ->  ( z  ||  A  /\  z  ||  B ) ) )
1211imim2d 54 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) ) )
1312ralimdva 2497 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  ->  A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
146ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  B  e.  ZZ )
1514zcnd 9167 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  B  e.  CC )
16 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  ZZ )
1716zcnd 9167 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  CC )
18 mulneg12 8152 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  t  e.  CC )  ->  ( -u B  x.  t )  =  ( B  x.  -u t
) )
1915, 17, 18syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( -u B  x.  t )  =  ( B  x.  -u t ) )
2019oveq2d 5783 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
( A  x.  x
)  +  ( -u B  x.  t )
)  =  ( ( A  x.  x )  +  ( B  x.  -u t ) ) )
2120eqeq2d 2149 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  <->  d  =  ( ( A  x.  x )  +  ( B  x.  -u t
) ) ) )
22 znegcl 9078 . . . . . . . . . . 11  |-  ( t  e.  ZZ  ->  -u t  e.  ZZ )
23 oveq2 5775 . . . . . . . . . . . . . 14  |-  ( y  =  -u t  ->  ( B  x.  y )  =  ( B  x.  -u t ) )
2423oveq2d 5783 . . . . . . . . . . . . 13  |-  ( y  =  -u t  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  x )  +  ( B  x.  -u t
) ) )
2524eqeq2d 2149 . . . . . . . . . . . 12  |-  ( y  =  -u t  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  d  =  ( ( A  x.  x )  +  ( B  x.  -u t
) ) ) )
2625rspcev 2784 . . . . . . . . . . 11  |-  ( (
-u t  e.  ZZ  /\  d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
2722, 26sylan 281 . . . . . . . . . 10  |-  ( ( t  e.  ZZ  /\  d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
2827ex 114 . . . . . . . . 9  |-  ( t  e.  ZZ  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
2928adantl 275 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
3021, 29sylbid 149 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
3130rexlimdva 2547 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
3231reximdv 2531 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3313, 32anim12d 333 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  (
( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3433reximdva 2532 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  ( E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
354, 34mpd 13 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
36 elznn0 9062 . . . 4  |-  ( B  e.  ZZ  <->  ( B  e.  RR  /\  ( B  e.  NN0  \/  -u B  e.  NN0 ) ) )
3736simprbi 273 . . 3  |-  ( B  e.  ZZ  ->  ( B  e.  NN0  \/  -u B  e.  NN0 ) )
3837adantl 275 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  e.  NN0  \/  -u B  e.  NN0 ) )
392, 35, 38mpjaodan 787 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   A.wral 2414   E.wrex 2415   class class class wbr 3924  (class class class)co 5767   CCcc 7611   RRcr 7612    + caddc 7616    x. cmul 7618   -ucneg 7927   NN0cn0 8970   ZZcz 9047    || cdvds 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-dvds 11483
This theorem is referenced by:  bezoutlembi  11682
  Copyright terms: Public domain W3C validator