ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembz Unicode version

Theorem bezoutlembz 11959
Description: Lemma for Bézout's identity. Like bezoutlemaz 11958 but where ' B ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembz  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y    B, d, x, y   
z, A, d    z, B

Proof of Theorem bezoutlembz
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 bezoutlemaz 11958 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
21adantlr 474 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
3 bezoutlemaz 11958 . . . 4  |-  ( ( A  e.  ZZ  /\  -u B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) ) )
43adantlr 474 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) ) )
5 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  z  e.  ZZ )
6 simplr 525 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  B  e.  ZZ )
76ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  B  e.  ZZ )
8 dvdsnegb 11770 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  B  e.  ZZ )  ->  ( z  ||  B  <->  z 
||  -u B ) )
95, 7, 8syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  B  <->  z  ||  -u B ) )
109biimprd 157 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  -u B  -> 
z  ||  B )
)
1110anim2d 335 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  A  /\  z  ||  -u B
)  ->  ( z  ||  A  /\  z  ||  B ) ) )
1211imim2d 54 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) ) )
1312ralimdva 2537 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  ->  A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
146ad2antrr 485 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  B  e.  ZZ )
1514zcnd 9335 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  B  e.  CC )
16 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  ZZ )
1716zcnd 9335 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  CC )
18 mulneg12 8316 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  t  e.  CC )  ->  ( -u B  x.  t )  =  ( B  x.  -u t
) )
1915, 17, 18syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( -u B  x.  t )  =  ( B  x.  -u t ) )
2019oveq2d 5869 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
( A  x.  x
)  +  ( -u B  x.  t )
)  =  ( ( A  x.  x )  +  ( B  x.  -u t ) ) )
2120eqeq2d 2182 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  <->  d  =  ( ( A  x.  x )  +  ( B  x.  -u t
) ) ) )
22 znegcl 9243 . . . . . . . . . . 11  |-  ( t  e.  ZZ  ->  -u t  e.  ZZ )
23 oveq2 5861 . . . . . . . . . . . . . 14  |-  ( y  =  -u t  ->  ( B  x.  y )  =  ( B  x.  -u t ) )
2423oveq2d 5869 . . . . . . . . . . . . 13  |-  ( y  =  -u t  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  x )  +  ( B  x.  -u t
) ) )
2524eqeq2d 2182 . . . . . . . . . . . 12  |-  ( y  =  -u t  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  d  =  ( ( A  x.  x )  +  ( B  x.  -u t
) ) ) )
2625rspcev 2834 . . . . . . . . . . 11  |-  ( (
-u t  e.  ZZ  /\  d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
2722, 26sylan 281 . . . . . . . . . 10  |-  ( ( t  e.  ZZ  /\  d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
2827ex 114 . . . . . . . . 9  |-  ( t  e.  ZZ  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
2928adantl 275 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
3021, 29sylbid 149 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
3130rexlimdva 2587 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
3231reximdv 2571 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3313, 32anim12d 333 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  (
( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3433reximdva 2572 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  ( E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
354, 34mpd 13 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
36 elznn0 9227 . . . 4  |-  ( B  e.  ZZ  <->  ( B  e.  RR  /\  ( B  e.  NN0  \/  -u B  e.  NN0 ) ) )
3736simprbi 273 . . 3  |-  ( B  e.  ZZ  ->  ( B  e.  NN0  \/  -u B  e.  NN0 ) )
3837adantl 275 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  e.  NN0  \/  -u B  e.  NN0 ) )
392, 35, 38mpjaodan 793 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   class class class wbr 3989  (class class class)co 5853   CCcc 7772   RRcr 7773    + caddc 7777    x. cmul 7779   -ucneg 8091   NN0cn0 9135   ZZcz 9212    || cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750
This theorem is referenced by:  bezoutlembi  11960
  Copyright terms: Public domain W3C validator