ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembz Unicode version

Theorem bezoutlembz 12440
Description: Lemma for Bézout's identity. Like bezoutlemaz 12439 but where ' B ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembz  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y    B, d, x, y   
z, A, d    z, B

Proof of Theorem bezoutlembz
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 bezoutlemaz 12439 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
21adantlr 477 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
3 bezoutlemaz 12439 . . . 4  |-  ( ( A  e.  ZZ  /\  -u B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) ) )
43adantlr 477 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) ) )
5 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  z  e.  ZZ )
6 simplr 528 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  B  e.  ZZ )
76ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  B  e.  ZZ )
8 dvdsnegb 12234 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  B  e.  ZZ )  ->  ( z  ||  B  <->  z 
||  -u B ) )
95, 7, 8syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  B  <->  z  ||  -u B ) )
109biimprd 158 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
z  ||  -u B  -> 
z  ||  B )
)
1110anim2d 337 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  A  /\  z  ||  -u B
)  ->  ( z  ||  A  /\  z  ||  B ) ) )
1211imim2d 54 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) ) )
1312ralimdva 2575 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  ->  A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
146ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  B  e.  ZZ )
1514zcnd 9531 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  B  e.  CC )
16 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  ZZ )
1716zcnd 9531 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  t  e.  CC )
18 mulneg12 8504 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  t  e.  CC )  ->  ( -u B  x.  t )  =  ( B  x.  -u t
) )
1915, 17, 18syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  ( -u B  x.  t )  =  ( B  x.  -u t ) )
2019oveq2d 5983 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
( A  x.  x
)  +  ( -u B  x.  t )
)  =  ( ( A  x.  x )  +  ( B  x.  -u t ) ) )
2120eqeq2d 2219 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  <->  d  =  ( ( A  x.  x )  +  ( B  x.  -u t
) ) ) )
22 znegcl 9438 . . . . . . . . . . 11  |-  ( t  e.  ZZ  ->  -u t  e.  ZZ )
23 oveq2 5975 . . . . . . . . . . . . . 14  |-  ( y  =  -u t  ->  ( B  x.  y )  =  ( B  x.  -u t ) )
2423oveq2d 5983 . . . . . . . . . . . . 13  |-  ( y  =  -u t  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  x )  +  ( B  x.  -u t
) ) )
2524eqeq2d 2219 . . . . . . . . . . . 12  |-  ( y  =  -u t  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  d  =  ( ( A  x.  x )  +  ( B  x.  -u t
) ) ) )
2625rspcev 2884 . . . . . . . . . . 11  |-  ( (
-u t  e.  ZZ  /\  d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
2722, 26sylan 283 . . . . . . . . . 10  |-  ( ( t  e.  ZZ  /\  d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )
2827ex 115 . . . . . . . . 9  |-  ( t  e.  ZZ  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
2928adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  -u t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
3021, 29sylbid 150 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  /\  t  e.  ZZ )  ->  (
d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
3130rexlimdva 2625 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  ->  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
3231reximdv 2609 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( -u B  x.  t ) )  ->  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )
3313, 32anim12d 335 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  /\  d  e.  NN0 )  ->  (
( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) )  ->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3433reximdva 2610 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  ( E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  -u B
) )  /\  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( -u B  x.  t )
) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
354, 34mpd 13 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -u B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
36 elznn0 9422 . . . 4  |-  ( B  e.  ZZ  <->  ( B  e.  RR  /\  ( B  e.  NN0  \/  -u B  e.  NN0 ) ) )
3736simprbi 275 . . 3  |-  ( B  e.  ZZ  ->  ( B  e.  NN0  \/  -u B  e.  NN0 ) )
3837adantl 277 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  e.  NN0  \/  -u B  e.  NN0 ) )
392, 35, 38mpjaodan 800 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   class class class wbr 4059  (class class class)co 5967   CCcc 7958   RRcr 7959    + caddc 7963    x. cmul 7965   -ucneg 8279   NN0cn0 9330   ZZcz 9407    || cdvds 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214
This theorem is referenced by:  bezoutlembi  12441
  Copyright terms: Public domain W3C validator