ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopni3 Unicode version

Theorem mopni3 12667
Description: An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopni.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
mopni3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  J  /\  P  e.  A
)  /\  R  e.  RR+ )  ->  E. x  e.  RR+  ( x  < 
R  /\  ( P
( ball `  D )
x )  C_  A
) )
Distinct variable groups:    x, A    x, D    x, J    x, R    x, P    x, X

Proof of Theorem mopni3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . 4  |-  J  =  ( MetOpen `  D )
21mopni2 12666 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A
)  ->  E. y  e.  RR+  ( P (
ball `  D )
y )  C_  A
)
32adantr 274 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  J  /\  P  e.  A
)  /\  R  e.  RR+ )  ->  E. y  e.  RR+  ( P (
ball `  D )
y )  C_  A
)
4 simp1 981 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A
)  ->  D  e.  ( *Met `  X
) )
51mopnss 12633 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J
)  ->  A  C_  X
)
65sselda 3097 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  J )  /\  P  e.  A )  ->  P  e.  X )
763impa 1176 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A
)  ->  P  e.  X )
84, 7jca 304 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A
)  ->  ( D  e.  ( *Met `  X )  /\  P  e.  X ) )
9 ssblex 12614 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  y  e.  RR+ ) )  ->  E. x  e.  RR+  (
x  <  R  /\  ( P ( ball `  D
) x )  C_  ( P ( ball `  D
) y ) ) )
108, 9sylan 281 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  J  /\  P  e.  A
)  /\  ( R  e.  RR+  /\  y  e.  RR+ ) )  ->  E. x  e.  RR+  ( x  < 
R  /\  ( P
( ball `  D )
x )  C_  ( P ( ball `  D
) y ) ) )
1110anassrs 397 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A )  /\  R  e.  RR+ )  /\  y  e.  RR+ )  ->  E. x  e.  RR+  ( x  < 
R  /\  ( P
( ball `  D )
x )  C_  ( P ( ball `  D
) y ) ) )
12 sstr 3105 . . . . . . 7  |-  ( ( ( P ( ball `  D ) x ) 
C_  ( P (
ball `  D )
y )  /\  ( P ( ball `  D
) y )  C_  A )  ->  ( P ( ball `  D
) x )  C_  A )
1312expcom 115 . . . . . 6  |-  ( ( P ( ball `  D
) y )  C_  A  ->  ( ( P ( ball `  D
) x )  C_  ( P ( ball `  D
) y )  -> 
( P ( ball `  D ) x ) 
C_  A ) )
1413anim2d 335 . . . . 5  |-  ( ( P ( ball `  D
) y )  C_  A  ->  ( ( x  <  R  /\  ( P ( ball `  D
) x )  C_  ( P ( ball `  D
) y ) )  ->  ( x  < 
R  /\  ( P
( ball `  D )
x )  C_  A
) ) )
1514reximdv 2533 . . . 4  |-  ( ( P ( ball `  D
) y )  C_  A  ->  ( E. x  e.  RR+  ( x  < 
R  /\  ( P
( ball `  D )
x )  C_  ( P ( ball `  D
) y ) )  ->  E. x  e.  RR+  ( x  <  R  /\  ( P ( ball `  D
) x )  C_  A ) ) )
1611, 15syl5com 29 . . 3  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A )  /\  R  e.  RR+ )  /\  y  e.  RR+ )  ->  (
( P ( ball `  D ) y ) 
C_  A  ->  E. x  e.  RR+  ( x  < 
R  /\  ( P
( ball `  D )
x )  C_  A
) ) )
1716rexlimdva 2549 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  J  /\  P  e.  A
)  /\  R  e.  RR+ )  ->  ( E. y  e.  RR+  ( P ( ball `  D
) y )  C_  A  ->  E. x  e.  RR+  ( x  <  R  /\  ( P ( ball `  D
) x )  C_  A ) ) )
183, 17mpd 13 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  J  /\  P  e.  A
)  /\  R  e.  RR+ )  ->  E. x  e.  RR+  ( x  < 
R  /\  ( P
( ball `  D )
x )  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2417    C_ wss 3071   class class class wbr 3929   ` cfv 5123  (class class class)co 5774    < clt 7812   RR+crp 9453   *Metcxmet 12163   ballcbl 12165   MetOpencmopn 12168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-q 9424  df-rp 9454  df-xneg 9571  df-xadd 9572  df-seqfrec 10231  df-exp 10305  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783  df-topgen 12155  df-psmet 12170  df-xmet 12171  df-bl 12173  df-mopn 12174  df-top 12179  df-topon 12192  df-bases 12224
This theorem is referenced by:  limcimolemlt  12816
  Copyright terms: Public domain W3C validator