ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmss12g Unicode version

Theorem pmss12g 6569
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmss12g  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( A  ^pm  B
)  C_  ( C  ^pm  D ) )

Proof of Theorem pmss12g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 xpss12 4646 . . . . . . 7  |-  ( ( B  C_  D  /\  A  C_  C )  -> 
( B  X.  A
)  C_  ( D  X.  C ) )
21ancoms 266 . . . . . 6  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( B  X.  A
)  C_  ( D  X.  C ) )
3 sstr 3105 . . . . . . 7  |-  ( ( f  C_  ( B  X.  A )  /\  ( B  X.  A )  C_  ( D  X.  C
) )  ->  f  C_  ( D  X.  C
) )
43expcom 115 . . . . . 6  |-  ( ( B  X.  A ) 
C_  ( D  X.  C )  ->  (
f  C_  ( B  X.  A )  ->  f  C_  ( D  X.  C
) ) )
52, 4syl 14 . . . . 5  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( f  C_  ( B  X.  A )  -> 
f  C_  ( D  X.  C ) ) )
65anim2d 335 . . . 4  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( ( Fun  f  /\  f  C_  ( B  X.  A ) )  ->  ( Fun  f  /\  f  C_  ( D  X.  C ) ) ) )
76adantr 274 . . 3  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( ( Fun  f  /\  f  C_  ( B  X.  A ) )  ->  ( Fun  f  /\  f  C_  ( D  X.  C ) ) ) )
8 ssexg 4067 . . . . 5  |-  ( ( A  C_  C  /\  C  e.  V )  ->  A  e.  _V )
9 ssexg 4067 . . . . 5  |-  ( ( B  C_  D  /\  D  e.  W )  ->  B  e.  _V )
10 elpmg 6558 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
118, 9, 10syl2an 287 . . . 4  |-  ( ( ( A  C_  C  /\  C  e.  V
)  /\  ( B  C_  D  /\  D  e.  W ) )  -> 
( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
1211an4s 577 . . 3  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
13 elpmg 6558 . . . 4  |-  ( ( C  e.  V  /\  D  e.  W )  ->  ( f  e.  ( C  ^pm  D )  <->  ( Fun  f  /\  f  C_  ( D  X.  C
) ) ) )
1413adantl 275 . . 3  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( f  e.  ( C  ^pm  D )  <->  ( Fun  f  /\  f  C_  ( D  X.  C
) ) ) )
157, 12, 143imtr4d 202 . 2  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( f  e.  ( A  ^pm  B )  ->  f  e.  ( C 
^pm  D ) ) )
1615ssrdv 3103 1  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( A  ^pm  B
)  C_  ( C  ^pm  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   _Vcvv 2686    C_ wss 3071    X. cxp 4537   Fun wfun 5117  (class class class)co 5774    ^pm cpm 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pm 6545
This theorem is referenced by:  lmres  12417
  Copyright terms: Public domain W3C validator