ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmss12g Unicode version

Theorem pmss12g 6576
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmss12g  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( A  ^pm  B
)  C_  ( C  ^pm  D ) )

Proof of Theorem pmss12g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 xpss12 4653 . . . . . . 7  |-  ( ( B  C_  D  /\  A  C_  C )  -> 
( B  X.  A
)  C_  ( D  X.  C ) )
21ancoms 266 . . . . . 6  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( B  X.  A
)  C_  ( D  X.  C ) )
3 sstr 3109 . . . . . . 7  |-  ( ( f  C_  ( B  X.  A )  /\  ( B  X.  A )  C_  ( D  X.  C
) )  ->  f  C_  ( D  X.  C
) )
43expcom 115 . . . . . 6  |-  ( ( B  X.  A ) 
C_  ( D  X.  C )  ->  (
f  C_  ( B  X.  A )  ->  f  C_  ( D  X.  C
) ) )
52, 4syl 14 . . . . 5  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( f  C_  ( B  X.  A )  -> 
f  C_  ( D  X.  C ) ) )
65anim2d 335 . . . 4  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( ( Fun  f  /\  f  C_  ( B  X.  A ) )  ->  ( Fun  f  /\  f  C_  ( D  X.  C ) ) ) )
76adantr 274 . . 3  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( ( Fun  f  /\  f  C_  ( B  X.  A ) )  ->  ( Fun  f  /\  f  C_  ( D  X.  C ) ) ) )
8 ssexg 4074 . . . . 5  |-  ( ( A  C_  C  /\  C  e.  V )  ->  A  e.  _V )
9 ssexg 4074 . . . . 5  |-  ( ( B  C_  D  /\  D  e.  W )  ->  B  e.  _V )
10 elpmg 6565 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
118, 9, 10syl2an 287 . . . 4  |-  ( ( ( A  C_  C  /\  C  e.  V
)  /\  ( B  C_  D  /\  D  e.  W ) )  -> 
( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
1211an4s 578 . . 3  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
13 elpmg 6565 . . . 4  |-  ( ( C  e.  V  /\  D  e.  W )  ->  ( f  e.  ( C  ^pm  D )  <->  ( Fun  f  /\  f  C_  ( D  X.  C
) ) ) )
1413adantl 275 . . 3  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( f  e.  ( C  ^pm  D )  <->  ( Fun  f  /\  f  C_  ( D  X.  C
) ) ) )
157, 12, 143imtr4d 202 . 2  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( f  e.  ( A  ^pm  B )  ->  f  e.  ( C 
^pm  D ) ) )
1615ssrdv 3107 1  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( A  ^pm  B
)  C_  ( C  ^pm  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1481   _Vcvv 2689    C_ wss 3075    X. cxp 4544   Fun wfun 5124  (class class class)co 5781    ^pm cpm 6550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-iota 5095  df-fun 5132  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-pm 6552
This theorem is referenced by:  lmres  12454
  Copyright terms: Public domain W3C validator