ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmss12g Unicode version

Theorem pmss12g 6785
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmss12g  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( A  ^pm  B
)  C_  ( C  ^pm  D ) )

Proof of Theorem pmss12g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 xpss12 4800 . . . . . . 7  |-  ( ( B  C_  D  /\  A  C_  C )  -> 
( B  X.  A
)  C_  ( D  X.  C ) )
21ancoms 268 . . . . . 6  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( B  X.  A
)  C_  ( D  X.  C ) )
3 sstr 3209 . . . . . . 7  |-  ( ( f  C_  ( B  X.  A )  /\  ( B  X.  A )  C_  ( D  X.  C
) )  ->  f  C_  ( D  X.  C
) )
43expcom 116 . . . . . 6  |-  ( ( B  X.  A ) 
C_  ( D  X.  C )  ->  (
f  C_  ( B  X.  A )  ->  f  C_  ( D  X.  C
) ) )
52, 4syl 14 . . . . 5  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( f  C_  ( B  X.  A )  -> 
f  C_  ( D  X.  C ) ) )
65anim2d 337 . . . 4  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( ( Fun  f  /\  f  C_  ( B  X.  A ) )  ->  ( Fun  f  /\  f  C_  ( D  X.  C ) ) ) )
76adantr 276 . . 3  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( ( Fun  f  /\  f  C_  ( B  X.  A ) )  ->  ( Fun  f  /\  f  C_  ( D  X.  C ) ) ) )
8 ssexg 4199 . . . . 5  |-  ( ( A  C_  C  /\  C  e.  V )  ->  A  e.  _V )
9 ssexg 4199 . . . . 5  |-  ( ( B  C_  D  /\  D  e.  W )  ->  B  e.  _V )
10 elpmg 6774 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
118, 9, 10syl2an 289 . . . 4  |-  ( ( ( A  C_  C  /\  C  e.  V
)  /\  ( B  C_  D  /\  D  e.  W ) )  -> 
( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
1211an4s 588 . . 3  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
13 elpmg 6774 . . . 4  |-  ( ( C  e.  V  /\  D  e.  W )  ->  ( f  e.  ( C  ^pm  D )  <->  ( Fun  f  /\  f  C_  ( D  X.  C
) ) ) )
1413adantl 277 . . 3  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( f  e.  ( C  ^pm  D )  <->  ( Fun  f  /\  f  C_  ( D  X.  C
) ) ) )
157, 12, 143imtr4d 203 . 2  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( f  e.  ( A  ^pm  B )  ->  f  e.  ( C 
^pm  D ) ) )
1615ssrdv 3207 1  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  e.  V  /\  D  e.  W ) )  -> 
( A  ^pm  B
)  C_  ( C  ^pm  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2178   _Vcvv 2776    C_ wss 3174    X. cxp 4691   Fun wfun 5284  (class class class)co 5967    ^pm cpm 6759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pm 6761
This theorem is referenced by:  lmres  14835  dvidsslem  15280
  Copyright terms: Public domain W3C validator