ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnei2 Unicode version

Theorem ssnei2 14714
Description: Any subset  M of  X containing a neighborhood  N of a set  S is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1  |-  X  = 
U. J
Assertion
Ref Expression
ssnei2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  M  e.  ( ( nei `  J
) `  S )
)

Proof of Theorem ssnei2
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simprr 531 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  M  C_  X )
2 neii2 14706 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
3 sstr2 3204 . . . . . . 7  |-  ( g 
C_  N  ->  ( N  C_  M  ->  g  C_  M ) )
43com12 30 . . . . . 6  |-  ( N 
C_  M  ->  (
g  C_  N  ->  g 
C_  M ) )
54anim2d 337 . . . . 5  |-  ( N 
C_  M  ->  (
( S  C_  g  /\  g  C_  N )  ->  ( S  C_  g  /\  g  C_  M
) ) )
65reximdv 2608 . . . 4  |-  ( N 
C_  M  ->  ( E. g  e.  J  ( S  C_  g  /\  g  C_  N )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) ) )
72, 6mpan9 281 . . 3  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  N  C_  M
)  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) )
87adantrr 479 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) )
9 neips.1 . . . . 5  |-  X  = 
U. J
109neiss2 14699 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
119isnei 14701 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( M  e.  ( ( nei `  J
) `  S )  <->  ( M  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) ) ) )
1210, 11syldan 282 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( M  e.  ( ( nei `  J
) `  S )  <->  ( M  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) ) ) )
1312adantr 276 . 2  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  ( M  e.  ( ( nei `  J ) `  S )  <->  ( M  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  M ) ) ) )
141, 8, 13mpbir2and 947 1  |-  ( ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `
 S ) )  /\  ( N  C_  M  /\  M  C_  X
) )  ->  M  e.  ( ( nei `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   E.wrex 2486    C_ wss 3170   U.cuni 3859   ` cfv 5285   Topctop 14554   neicnei 14695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-top 14555  df-nei 14696
This theorem is referenced by:  topssnei  14719
  Copyright terms: Public domain W3C validator