Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssnei2 | Unicode version |
Description: Any subset of containing a neighborhood of a set is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
neips.1 |
Ref | Expression |
---|---|
ssnei2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 531 | . 2 | |
2 | neii2 13229 | . . . 4 | |
3 | sstr2 3160 | . . . . . . 7 | |
4 | 3 | com12 30 | . . . . . 6 |
5 | 4 | anim2d 337 | . . . . 5 |
6 | 5 | reximdv 2576 | . . . 4 |
7 | 2, 6 | mpan9 281 | . . 3 |
8 | 7 | adantrr 479 | . 2 |
9 | neips.1 | . . . . 5 | |
10 | 9 | neiss2 13222 | . . . 4 |
11 | 9 | isnei 13224 | . . . 4 |
12 | 10, 11 | syldan 282 | . . 3 |
13 | 12 | adantr 276 | . 2 |
14 | 1, 8, 13 | mpbir2and 944 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wrex 2454 wss 3127 cuni 3805 cfv 5208 ctop 13075 cnei 13218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-top 13076 df-nei 13219 |
This theorem is referenced by: topssnei 13242 |
Copyright terms: Public domain | W3C validator |