Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltadd2 | Unicode version |
Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltadd2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axltadd 7968 | . 2 | |
2 | ax-rnegex 7862 | . . . 4 | |
3 | 2 | 3ad2ant3 1010 | . . 3 |
4 | simpl3 992 | . . . . . . 7 | |
5 | simpl1 990 | . . . . . . 7 | |
6 | 4, 5 | readdcld 7928 | . . . . . 6 |
7 | simpl2 991 | . . . . . . 7 | |
8 | 4, 7 | readdcld 7928 | . . . . . 6 |
9 | simprl 521 | . . . . . 6 | |
10 | axltadd 7968 | . . . . . 6 | |
11 | 6, 8, 9, 10 | syl3anc 1228 | . . . . 5 |
12 | 9 | recnd 7927 | . . . . . . 7 |
13 | 4 | recnd 7927 | . . . . . . 7 |
14 | 5 | recnd 7927 | . . . . . . 7 |
15 | 12, 13, 14 | addassd 7921 | . . . . . 6 |
16 | 7 | recnd 7927 | . . . . . . 7 |
17 | 12, 13, 16 | addassd 7921 | . . . . . 6 |
18 | 15, 17 | breq12d 3995 | . . . . 5 |
19 | 11, 18 | sylibrd 168 | . . . 4 |
20 | simprr 522 | . . . . . . . 8 | |
21 | addcom 8035 | . . . . . . . . . 10 | |
22 | 21 | eqeq1d 2174 | . . . . . . . . 9 |
23 | 13, 12, 22 | syl2anc 409 | . . . . . . . 8 |
24 | 20, 23 | mpbid 146 | . . . . . . 7 |
25 | 24 | oveq1d 5857 | . . . . . 6 |
26 | 14 | addid2d 8048 | . . . . . 6 |
27 | 25, 26 | eqtrd 2198 | . . . . 5 |
28 | 24 | oveq1d 5857 | . . . . . 6 |
29 | 16 | addid2d 8048 | . . . . . 6 |
30 | 28, 29 | eqtrd 2198 | . . . . 5 |
31 | 27, 30 | breq12d 3995 | . . . 4 |
32 | 19, 31 | sylibd 148 | . . 3 |
33 | 3, 32 | rexlimddv 2588 | . 2 |
34 | 1, 33 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wrex 2445 class class class wbr 3982 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 caddc 7756 clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-ltxr 7938 |
This theorem is referenced by: ltadd2i 8318 ltadd2d 8319 ltaddneg 8322 ltadd1 8327 ltaddpos 8350 ltsub2 8357 ltaddsublt 8469 avglt1 9095 flqbi2 10226 |
Copyright terms: Public domain | W3C validator |