Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltadd2 | Unicode version |
Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltadd2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axltadd 7978 | . 2 | |
2 | ax-rnegex 7872 | . . . 4 | |
3 | 2 | 3ad2ant3 1015 | . . 3 |
4 | simpl3 997 | . . . . . . 7 | |
5 | simpl1 995 | . . . . . . 7 | |
6 | 4, 5 | readdcld 7938 | . . . . . 6 |
7 | simpl2 996 | . . . . . . 7 | |
8 | 4, 7 | readdcld 7938 | . . . . . 6 |
9 | simprl 526 | . . . . . 6 | |
10 | axltadd 7978 | . . . . . 6 | |
11 | 6, 8, 9, 10 | syl3anc 1233 | . . . . 5 |
12 | 9 | recnd 7937 | . . . . . . 7 |
13 | 4 | recnd 7937 | . . . . . . 7 |
14 | 5 | recnd 7937 | . . . . . . 7 |
15 | 12, 13, 14 | addassd 7931 | . . . . . 6 |
16 | 7 | recnd 7937 | . . . . . . 7 |
17 | 12, 13, 16 | addassd 7931 | . . . . . 6 |
18 | 15, 17 | breq12d 4000 | . . . . 5 |
19 | 11, 18 | sylibrd 168 | . . . 4 |
20 | simprr 527 | . . . . . . . 8 | |
21 | addcom 8045 | . . . . . . . . . 10 | |
22 | 21 | eqeq1d 2179 | . . . . . . . . 9 |
23 | 13, 12, 22 | syl2anc 409 | . . . . . . . 8 |
24 | 20, 23 | mpbid 146 | . . . . . . 7 |
25 | 24 | oveq1d 5866 | . . . . . 6 |
26 | 14 | addid2d 8058 | . . . . . 6 |
27 | 25, 26 | eqtrd 2203 | . . . . 5 |
28 | 24 | oveq1d 5866 | . . . . . 6 |
29 | 16 | addid2d 8058 | . . . . . 6 |
30 | 28, 29 | eqtrd 2203 | . . . . 5 |
31 | 27, 30 | breq12d 4000 | . . . 4 |
32 | 19, 31 | sylibd 148 | . . 3 |
33 | 3, 32 | rexlimddv 2592 | . 2 |
34 | 1, 33 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3987 (class class class)co 5851 cc 7761 cr 7762 cc0 7763 caddc 7766 clt 7943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-addcom 7863 ax-addass 7865 ax-i2m1 7868 ax-0id 7871 ax-rnegex 7872 ax-pre-ltadd 7879 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-xp 4615 df-iota 5158 df-fv 5204 df-ov 5854 df-pnf 7945 df-mnf 7946 df-ltxr 7948 |
This theorem is referenced by: ltadd2i 8328 ltadd2d 8329 ltaddneg 8332 ltadd1 8337 ltaddpos 8360 ltsub2 8367 ltaddsublt 8479 avglt1 9105 flqbi2 10236 |
Copyright terms: Public domain | W3C validator |