| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltadd2 | Unicode version | ||
| Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltadd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axltadd 8096 |
. 2
| |
| 2 | ax-rnegex 7988 |
. . . 4
| |
| 3 | 2 | 3ad2ant3 1022 |
. . 3
|
| 4 | simpl3 1004 |
. . . . . . 7
| |
| 5 | simpl1 1002 |
. . . . . . 7
| |
| 6 | 4, 5 | readdcld 8056 |
. . . . . 6
|
| 7 | simpl2 1003 |
. . . . . . 7
| |
| 8 | 4, 7 | readdcld 8056 |
. . . . . 6
|
| 9 | simprl 529 |
. . . . . 6
| |
| 10 | axltadd 8096 |
. . . . . 6
| |
| 11 | 6, 8, 9, 10 | syl3anc 1249 |
. . . . 5
|
| 12 | 9 | recnd 8055 |
. . . . . . 7
|
| 13 | 4 | recnd 8055 |
. . . . . . 7
|
| 14 | 5 | recnd 8055 |
. . . . . . 7
|
| 15 | 12, 13, 14 | addassd 8049 |
. . . . . 6
|
| 16 | 7 | recnd 8055 |
. . . . . . 7
|
| 17 | 12, 13, 16 | addassd 8049 |
. . . . . 6
|
| 18 | 15, 17 | breq12d 4046 |
. . . . 5
|
| 19 | 11, 18 | sylibrd 169 |
. . . 4
|
| 20 | simprr 531 |
. . . . . . . 8
| |
| 21 | addcom 8163 |
. . . . . . . . . 10
| |
| 22 | 21 | eqeq1d 2205 |
. . . . . . . . 9
|
| 23 | 13, 12, 22 | syl2anc 411 |
. . . . . . . 8
|
| 24 | 20, 23 | mpbid 147 |
. . . . . . 7
|
| 25 | 24 | oveq1d 5937 |
. . . . . 6
|
| 26 | 14 | addlidd 8176 |
. . . . . 6
|
| 27 | 25, 26 | eqtrd 2229 |
. . . . 5
|
| 28 | 24 | oveq1d 5937 |
. . . . . 6
|
| 29 | 16 | addlidd 8176 |
. . . . . 6
|
| 30 | 28, 29 | eqtrd 2229 |
. . . . 5
|
| 31 | 27, 30 | breq12d 4046 |
. . . 4
|
| 32 | 19, 31 | sylibd 149 |
. . 3
|
| 33 | 3, 32 | rexlimddv 2619 |
. 2
|
| 34 | 1, 33 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-ltxr 8066 |
| This theorem is referenced by: ltadd2i 8447 ltadd2d 8448 ltaddneg 8451 ltadd1 8456 ltaddpos 8479 ltsub2 8486 ltaddsublt 8598 avglt1 9230 flqbi2 10381 |
| Copyright terms: Public domain | W3C validator |