ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltadd2 Unicode version

Theorem ltadd2 8527
Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltadd2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  ( C  +  A )  <  ( C  +  B )
) )

Proof of Theorem ltadd2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 axltadd 8177 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( C  +  A )  <  ( C  +  B
) ) )
2 ax-rnegex 8069 . . . 4  |-  ( C  e.  RR  ->  E. x  e.  RR  ( C  +  x )  =  0 )
323ad2ant3 1023 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  E. x  e.  RR  ( C  +  x )  =  0 )
4 simpl3 1005 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  RR )
5 simpl1 1003 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  RR )
64, 5readdcld 8137 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( C  +  A )  e.  RR )
7 simpl2 1004 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  RR )
84, 7readdcld 8137 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( C  +  B )  e.  RR )
9 simprl 529 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  RR )
10 axltadd 8177 . . . . . 6  |-  ( ( ( C  +  A
)  e.  RR  /\  ( C  +  B
)  e.  RR  /\  x  e.  RR )  ->  ( ( C  +  A )  <  ( C  +  B )  ->  ( x  +  ( C  +  A ) )  <  ( x  +  ( C  +  B ) ) ) )
116, 8, 9, 10syl3anc 1250 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( ( C  +  A )  <  ( C  +  B
)  ->  ( x  +  ( C  +  A ) )  < 
( x  +  ( C  +  B ) ) ) )
129recnd 8136 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  CC )
134recnd 8136 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  CC )
145recnd 8136 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  CC )
1512, 13, 14addassd 8130 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  A )  =  ( x  +  ( C  +  A ) ) )
167recnd 8136 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  CC )
1712, 13, 16addassd 8130 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  B )  =  ( x  +  ( C  +  B ) ) )
1815, 17breq12d 4072 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
( x  +  C
)  +  A )  <  ( ( x  +  C )  +  B )  <->  ( x  +  ( C  +  A ) )  < 
( x  +  ( C  +  B ) ) ) )
1911, 18sylibrd 169 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( ( C  +  A )  <  ( C  +  B
)  ->  ( (
x  +  C )  +  A )  < 
( ( x  +  C )  +  B
) ) )
20 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( C  +  x )  =  0 )
21 addcom 8244 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  x  e.  CC )  ->  ( C  +  x
)  =  ( x  +  C ) )
2221eqeq1d 2216 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  x  e.  CC )  ->  ( ( C  +  x )  =  0  <-> 
( x  +  C
)  =  0 ) )
2313, 12, 22syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( ( C  +  x )  =  0  <->  ( x  +  C )  =  0 ) )
2420, 23mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( x  +  C )  =  0 )
2524oveq1d 5982 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  A )  =  ( 0  +  A
) )
2614addlidd 8257 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( 0  +  A )  =  A )
2725, 26eqtrd 2240 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  A )  =  A )
2824oveq1d 5982 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  B )  =  ( 0  +  B
) )
2916addlidd 8257 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( 0  +  B )  =  B )
3028, 29eqtrd 2240 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  B )  =  B )
3127, 30breq12d 4072 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
( x  +  C
)  +  A )  <  ( ( x  +  C )  +  B )  <->  A  <  B ) )
3219, 31sylibd 149 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( ( C  +  A )  <  ( C  +  B
)  ->  A  <  B ) )
333, 32rexlimddv 2630 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  <  ( C  +  B )  ->  A  <  B ) )
341, 33impbid 129 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  ( C  +  A )  <  ( C  +  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487   class class class wbr 4059  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960    + caddc 7963    < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-iota 5251  df-fv 5298  df-ov 5970  df-pnf 8144  df-mnf 8145  df-ltxr 8147
This theorem is referenced by:  ltadd2i  8528  ltadd2d  8529  ltaddneg  8532  ltadd1  8537  ltaddpos  8560  ltsub2  8567  ltaddsublt  8679  avglt1  9311  flqbi2  10471
  Copyright terms: Public domain W3C validator