| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltadd2 | Unicode version | ||
| Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltadd2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axltadd 8177 |
. 2
| |
| 2 | ax-rnegex 8069 |
. . . 4
| |
| 3 | 2 | 3ad2ant3 1023 |
. . 3
|
| 4 | simpl3 1005 |
. . . . . . 7
| |
| 5 | simpl1 1003 |
. . . . . . 7
| |
| 6 | 4, 5 | readdcld 8137 |
. . . . . 6
|
| 7 | simpl2 1004 |
. . . . . . 7
| |
| 8 | 4, 7 | readdcld 8137 |
. . . . . 6
|
| 9 | simprl 529 |
. . . . . 6
| |
| 10 | axltadd 8177 |
. . . . . 6
| |
| 11 | 6, 8, 9, 10 | syl3anc 1250 |
. . . . 5
|
| 12 | 9 | recnd 8136 |
. . . . . . 7
|
| 13 | 4 | recnd 8136 |
. . . . . . 7
|
| 14 | 5 | recnd 8136 |
. . . . . . 7
|
| 15 | 12, 13, 14 | addassd 8130 |
. . . . . 6
|
| 16 | 7 | recnd 8136 |
. . . . . . 7
|
| 17 | 12, 13, 16 | addassd 8130 |
. . . . . 6
|
| 18 | 15, 17 | breq12d 4072 |
. . . . 5
|
| 19 | 11, 18 | sylibrd 169 |
. . . 4
|
| 20 | simprr 531 |
. . . . . . . 8
| |
| 21 | addcom 8244 |
. . . . . . . . . 10
| |
| 22 | 21 | eqeq1d 2216 |
. . . . . . . . 9
|
| 23 | 13, 12, 22 | syl2anc 411 |
. . . . . . . 8
|
| 24 | 20, 23 | mpbid 147 |
. . . . . . 7
|
| 25 | 24 | oveq1d 5982 |
. . . . . 6
|
| 26 | 14 | addlidd 8257 |
. . . . . 6
|
| 27 | 25, 26 | eqtrd 2240 |
. . . . 5
|
| 28 | 24 | oveq1d 5982 |
. . . . . 6
|
| 29 | 16 | addlidd 8257 |
. . . . . 6
|
| 30 | 28, 29 | eqtrd 2240 |
. . . . 5
|
| 31 | 27, 30 | breq12d 4072 |
. . . 4
|
| 32 | 19, 31 | sylibd 149 |
. . 3
|
| 33 | 3, 32 | rexlimddv 2630 |
. 2
|
| 34 | 1, 33 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-ltxr 8147 |
| This theorem is referenced by: ltadd2i 8528 ltadd2d 8529 ltaddneg 8532 ltadd1 8537 ltaddpos 8560 ltsub2 8567 ltaddsublt 8679 avglt1 9311 flqbi2 10471 |
| Copyright terms: Public domain | W3C validator |