![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > readdcl | Unicode version |
Description: Alias for ax-addrcl 7908, for naming consistency with readdcli 7970. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
readdcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addrcl 7908 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-addrcl 7908 |
This theorem is referenced by: 0re 7957 readdcli 7970 readdcld 7987 axltadd 8027 peano2re 8093 cnegexlem3 8134 cnegex 8135 resubcl 8221 ltleadd 8403 ltaddsublt 8528 recexap 8610 recreclt 8857 cju 8918 nnge1 8942 addltmul 9155 avglt1 9157 avglt2 9158 avgle1 9159 avgle2 9160 nzadd 9305 irradd 9646 rpaddcl 9677 xaddnemnf 9857 xaddnepnf 9858 xnegdi 9868 xaddass 9869 xltadd1 9876 iooshf 9952 ge0addcl 9981 icoshft 9990 icoshftf1o 9991 iccshftr 9994 difelfznle 10135 elfzodifsumelfzo 10201 subfzo0 10242 serfre 10475 ser3mono 10478 ser3ge0 10517 bernneq 10641 faclbnd6 10724 readd 10878 imadd 10886 elicc4abs 11103 caubnd2 11126 maxabsle 11213 maxabslemval 11217 maxcl 11219 mulcn2 11320 climserle 11353 fsumrecl 11409 mertenslem2 11544 ege2le3 11679 eftlub 11698 efgt1 11705 pythagtriplem12 12275 pythagtriplem14 12277 pythagtriplem16 12279 xmeter 13939 bl2ioo 14045 ioo2bl 14046 ioo2blex 14047 blssioo 14048 tangtx 14262 relogmul 14293 |
Copyright terms: Public domain | W3C validator |