Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > readdcl | Unicode version |
Description: Alias for ax-addrcl 7871, for naming consistency with readdcli 7933. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
readdcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addrcl 7871 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 (class class class)co 5853 cr 7773 caddc 7777 |
This theorem was proved from axioms: ax-addrcl 7871 |
This theorem is referenced by: 0re 7920 readdcli 7933 readdcld 7949 axltadd 7989 peano2re 8055 cnegexlem3 8096 cnegex 8097 resubcl 8183 ltleadd 8365 ltaddsublt 8490 recexap 8571 recreclt 8816 cju 8877 nnge1 8901 addltmul 9114 avglt1 9116 avglt2 9117 avgle1 9118 avgle2 9119 nzadd 9264 irradd 9605 rpaddcl 9634 xaddnemnf 9814 xaddnepnf 9815 xnegdi 9825 xaddass 9826 xltadd1 9833 iooshf 9909 ge0addcl 9938 icoshft 9947 icoshftf1o 9948 iccshftr 9951 difelfznle 10091 elfzodifsumelfzo 10157 subfzo0 10198 serfre 10431 ser3mono 10434 ser3ge0 10473 bernneq 10596 faclbnd6 10678 readd 10833 imadd 10841 elicc4abs 11058 caubnd2 11081 maxabsle 11168 maxabslemval 11172 maxcl 11174 mulcn2 11275 climserle 11308 fsumrecl 11364 mertenslem2 11499 ege2le3 11634 eftlub 11653 efgt1 11660 pythagtriplem12 12229 pythagtriplem14 12231 pythagtriplem16 12233 xmeter 13230 bl2ioo 13336 ioo2bl 13337 ioo2blex 13338 blssioo 13339 tangtx 13553 relogmul 13584 |
Copyright terms: Public domain | W3C validator |