| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltle | Unicode version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| ltle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnsym 8158 |
. 2
| |
| 2 | lenlt 8148 |
. 2
| |
| 3 | 1, 2 | sylibrd 169 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltirr 8037 ax-pre-lttrn 8039 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 |
| This theorem is referenced by: ltlei 8174 ltled 8191 ltleap 8705 lep1 8918 lem1 8920 letrp1 8921 ltmul12a 8933 bndndx 9294 nn0ge0 9320 zletric 9416 zlelttric 9417 zltnle 9418 zleloe 9419 ltsubnn0 9440 zdcle 9449 uzind 9484 fnn0ind 9489 eluz2b2 9724 rpge0 9788 zltaddlt1le 10129 difelfznle 10257 elfzouz2 10284 elfzo0le 10309 fzosplitprm1 10363 fzostep1 10366 qletric 10384 qlelttric 10385 qltnle 10386 expgt1 10722 expnlbnd2 10810 faclbnd 10886 swrdsbslen 11119 swrdspsleq 11120 caucvgrelemcau 11291 resqrexlemdecn 11323 mulcn2 11623 efcllemp 11969 sin01bnd 12068 cos01bnd 12069 sin01gt0 12073 cos01gt0 12074 absef 12081 efieq1re 12083 nn0o 12218 pythagtriplem12 12598 pythagtriplem13 12599 pythagtriplem14 12600 pythagtriplem16 12602 pclemub 12610 sincosq1lem 15297 tangtx 15310 |
| Copyright terms: Public domain | W3C validator |