| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ltle | Unicode version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) | 
| Ref | Expression | 
|---|---|
| ltle | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ltnsym 8112 | 
. 2
 | |
| 2 | lenlt 8102 | 
. 2
 | |
| 3 | 1, 2 | sylibrd 169 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-lttrn 7993 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 | 
| This theorem is referenced by: ltlei 8128 ltled 8145 ltleap 8659 lep1 8872 lem1 8874 letrp1 8875 ltmul12a 8887 bndndx 9248 nn0ge0 9274 zletric 9370 zlelttric 9371 zltnle 9372 zleloe 9373 ltsubnn0 9393 zdcle 9402 uzind 9437 fnn0ind 9442 eluz2b2 9677 rpge0 9741 zltaddlt1le 10082 difelfznle 10210 elfzouz2 10237 elfzo0le 10261 fzosplitprm1 10310 fzostep1 10313 qletric 10331 qlelttric 10332 qltnle 10333 expgt1 10669 expnlbnd2 10757 faclbnd 10833 caucvgrelemcau 11145 resqrexlemdecn 11177 mulcn2 11477 efcllemp 11823 sin01bnd 11922 cos01bnd 11923 sin01gt0 11927 cos01gt0 11928 absef 11935 efieq1re 11937 nn0o 12072 pythagtriplem12 12444 pythagtriplem13 12445 pythagtriplem14 12446 pythagtriplem16 12448 pclemub 12456 sincosq1lem 15061 tangtx 15074 | 
| Copyright terms: Public domain | W3C validator |