ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltle Unicode version

Theorem ltle 8109
Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
ltle  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)

Proof of Theorem ltle
StepHypRef Expression
1 ltnsym 8107 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  -.  B  <  A
) )
2 lenlt 8097 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
31, 2sylibrd 169 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2164   class class class wbr 4030   RRcr 7873    < clt 8056    <_ cle 8057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-pre-ltirr 7986  ax-pre-lttrn 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062
This theorem is referenced by:  ltlei  8123  ltled  8140  ltleap  8653  lep1  8866  lem1  8868  letrp1  8869  ltmul12a  8881  bndndx  9242  nn0ge0  9268  zletric  9364  zlelttric  9365  zltnle  9366  zleloe  9367  ltsubnn0  9387  zdcle  9396  uzind  9431  fnn0ind  9436  eluz2b2  9671  rpge0  9735  zltaddlt1le  10076  difelfznle  10204  elfzouz2  10231  elfzo0le  10255  fzosplitprm1  10304  fzostep1  10307  qletric  10314  qlelttric  10315  qltnle  10316  expgt1  10651  expnlbnd2  10739  faclbnd  10815  caucvgrelemcau  11127  resqrexlemdecn  11159  mulcn2  11458  efcllemp  11804  sin01bnd  11903  cos01bnd  11904  sin01gt0  11908  cos01gt0  11909  absef  11916  efieq1re  11918  nn0o  12051  pythagtriplem12  12416  pythagtriplem13  12417  pythagtriplem14  12418  pythagtriplem16  12420  pclemub  12428  sincosq1lem  15001  tangtx  15014
  Copyright terms: Public domain W3C validator