| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltle | Unicode version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| ltle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnsym 8160 |
. 2
| |
| 2 | lenlt 8150 |
. 2
| |
| 3 | 1, 2 | sylibrd 169 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltirr 8039 ax-pre-lttrn 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 |
| This theorem is referenced by: ltlei 8176 ltled 8193 ltleap 8707 lep1 8920 lem1 8922 letrp1 8923 ltmul12a 8935 bndndx 9296 nn0ge0 9322 zletric 9418 zlelttric 9419 zltnle 9420 zleloe 9421 ltsubnn0 9442 zdcle 9451 uzind 9486 fnn0ind 9491 eluz2b2 9726 rpge0 9790 zltaddlt1le 10131 difelfznle 10259 elfzouz2 10286 elfzo0le 10311 fzosplitprm1 10365 fzostep1 10368 qletric 10386 qlelttric 10387 qltnle 10388 expgt1 10724 expnlbnd2 10812 faclbnd 10888 swrdsbslen 11122 swrdspsleq 11123 caucvgrelemcau 11324 resqrexlemdecn 11356 mulcn2 11656 efcllemp 12002 sin01bnd 12101 cos01bnd 12102 sin01gt0 12106 cos01gt0 12107 absef 12114 efieq1re 12116 nn0o 12251 pythagtriplem12 12631 pythagtriplem13 12632 pythagtriplem14 12633 pythagtriplem16 12635 pclemub 12643 sincosq1lem 15330 tangtx 15343 |
| Copyright terms: Public domain | W3C validator |