| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltle | Unicode version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| ltle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnsym 8232 |
. 2
| |
| 2 | lenlt 8222 |
. 2
| |
| 3 | 1, 2 | sylibrd 169 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 ax-pre-lttrn 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: ltlei 8248 ltled 8265 ltleap 8779 lep1 8992 lem1 8994 letrp1 8995 ltmul12a 9007 bndndx 9368 nn0ge0 9394 zletric 9490 zlelttric 9491 zltnle 9492 zleloe 9493 ltsubnn0 9514 zdcle 9523 uzind 9558 fnn0ind 9563 eluz2b2 9798 rpge0 9862 zltaddlt1le 10203 difelfznle 10331 elfzouz2 10358 elfzo0le 10385 fzosplitprm1 10440 fzostep1 10443 qletric 10461 qlelttric 10462 qltnle 10463 expgt1 10799 expnlbnd2 10887 faclbnd 10963 swrdsbslen 11198 swrdspsleq 11199 pfxccat3 11266 swrdccat 11267 caucvgrelemcau 11491 resqrexlemdecn 11523 mulcn2 11823 efcllemp 12169 sin01bnd 12268 cos01bnd 12269 sin01gt0 12273 cos01gt0 12274 absef 12281 efieq1re 12283 nn0o 12418 pythagtriplem12 12798 pythagtriplem13 12799 pythagtriplem14 12800 pythagtriplem16 12802 pclemub 12810 sincosq1lem 15499 tangtx 15512 |
| Copyright terms: Public domain | W3C validator |