ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuenun Unicode version

Theorem djuenun 7326
Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
Assertion
Ref Expression
djuenun  |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( A C )  ~~  ( B  u.  D )
)

Proof of Theorem djuenun
StepHypRef Expression
1 djuen 7325 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A C )  ~~  ( B D )
)
213adant3 1020 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( A C )  ~~  ( B D ) )
3 relen 6833 . . . 4  |-  Rel  ~~
43brrelex2i 4720 . . 3  |-  ( A 
~~  B  ->  B  e.  _V )
53brrelex2i 4720 . . 3  |-  ( C 
~~  D  ->  D  e.  _V )
6 id 19 . . 3  |-  ( ( B  i^i  D )  =  (/)  ->  ( B  i^i  D )  =  (/) )
7 endjudisj 7324 . . 3  |-  ( ( B  e.  _V  /\  D  e.  _V  /\  ( B  i^i  D )  =  (/) )  ->  ( B D )  ~~  ( B  u.  D )
)
84, 5, 6, 7syl3an 1292 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( B D )  ~~  ( B  u.  D )
)
9 entr 6878 . 2  |-  ( ( ( A C )  ~~  ( B D )  /\  ( B D )  ~~  ( B  u.  D
) )  ->  ( A C )  ~~  ( B  u.  D )
)
102, 8, 9syl2anc 411 1  |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( A C )  ~~  ( B  u.  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   _Vcvv 2772    u. cun 3164    i^i cin 3165   (/)c0 3460   class class class wbr 4045    ~~ cen 6827   ⊔ cdju 7141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1st 6228  df-2nd 6229  df-1o 6504  df-er 6622  df-en 6830  df-dju 7142  df-inl 7151  df-inr 7152
This theorem is referenced by:  dju1en  7327  djucomen  7330  djuassen  7331  xpdjuen  7332
  Copyright terms: Public domain W3C validator