ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuenun Unicode version

Theorem djuenun 7262
Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
Assertion
Ref Expression
djuenun  |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( A C )  ~~  ( B  u.  D )
)

Proof of Theorem djuenun
StepHypRef Expression
1 djuen 7261 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A C )  ~~  ( B D )
)
213adant3 1019 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( A C )  ~~  ( B D ) )
3 relen 6789 . . . 4  |-  Rel  ~~
43brrelex2i 4699 . . 3  |-  ( A 
~~  B  ->  B  e.  _V )
53brrelex2i 4699 . . 3  |-  ( C 
~~  D  ->  D  e.  _V )
6 id 19 . . 3  |-  ( ( B  i^i  D )  =  (/)  ->  ( B  i^i  D )  =  (/) )
7 endjudisj 7260 . . 3  |-  ( ( B  e.  _V  /\  D  e.  _V  /\  ( B  i^i  D )  =  (/) )  ->  ( B D )  ~~  ( B  u.  D )
)
84, 5, 6, 7syl3an 1291 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( B D )  ~~  ( B  u.  D )
)
9 entr 6829 . 2  |-  ( ( ( A C )  ~~  ( B D )  /\  ( B D )  ~~  ( B  u.  D
) )  ->  ( A C )  ~~  ( B  u.  D )
)
102, 8, 9syl2anc 411 1  |-  ( ( A  ~~  B  /\  C  ~~  D  /\  ( B  i^i  D )  =  (/) )  ->  ( A C )  ~~  ( B  u.  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760    u. cun 3151    i^i cin 3152   (/)c0 3446   class class class wbr 4029    ~~ cen 6783   ⊔ cdju 7086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-iord 4395  df-on 4397  df-suc 4400  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-1st 6184  df-2nd 6185  df-1o 6460  df-er 6578  df-en 6786  df-dju 7087  df-inl 7096  df-inr 7097
This theorem is referenced by:  dju1en  7263  djucomen  7266  djuassen  7267  xpdjuen  7268
  Copyright terms: Public domain W3C validator