ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex2i GIF version

Theorem brrelex2i 4718
Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
brrelexi.1 Rel 𝑅
Assertion
Ref Expression
brrelex2i (𝐴𝑅𝐵𝐵 ∈ V)

Proof of Theorem brrelex2i
StepHypRef Expression
1 brrelexi.1 . 2 Rel 𝑅
2 brrelex2 4715 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
31, 2mpan 424 1 (𝐴𝑅𝐵𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  Vcvv 2771   class class class wbr 4043  Rel wrel 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681
This theorem is referenced by:  vtoclr  4722  brdomi  6837  xpdom2  6925  xpdom1g  6927  mapdom1g  6943  djudom  7194  difinfsn  7201  enomnilem  7239  enmkvlem  7262  enwomnilem  7270  djuenun  7323  aprcl  8718  hashinfom  10921  clim  11563  ntrivcvgap0  11831
  Copyright terms: Public domain W3C validator