ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex2i GIF version

Theorem brrelex2i 4719
Description: The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
brrelexi.1 Rel 𝑅
Assertion
Ref Expression
brrelex2i (𝐴𝑅𝐵𝐵 ∈ V)

Proof of Theorem brrelex2i
StepHypRef Expression
1 brrelexi.1 . 2 Rel 𝑅
2 brrelex2 4716 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
31, 2mpan 424 1 (𝐴𝑅𝐵𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  Vcvv 2772   class class class wbr 4044  Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682
This theorem is referenced by:  vtoclr  4723  brdomi  6838  xpdom2  6926  xpdom1g  6928  mapdom1g  6944  djudom  7195  difinfsn  7202  enomnilem  7240  enmkvlem  7263  enwomnilem  7271  djuenun  7324  aprcl  8719  hashinfom  10923  clim  11592  ntrivcvgap0  11860
  Copyright terms: Public domain W3C validator