| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caofcom | GIF version | ||
| Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| caofcom.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
| caofcom.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥)) |
| Ref | Expression |
|---|---|
| caofcom | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝐺 ∘𝑓 𝑅𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 2 | 1 | ffvelcdmda 5728 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
| 3 | caofcom.3 | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
| 4 | 3 | ffvelcdmda 5728 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
| 5 | 2, 4 | jca 306 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆)) |
| 6 | caofcom.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥)) | |
| 7 | 6 | caovcomg 6115 | . . . 4 ⊢ ((𝜑 ∧ ((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆)) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = ((𝐺‘𝑤)𝑅(𝐹‘𝑤))) |
| 8 | 5, 7 | syldan 282 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = ((𝐺‘𝑤)𝑅(𝐹‘𝑤))) |
| 9 | 8 | mpteq2dva 4142 | . 2 ⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑅(𝐺‘𝑤))) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐹‘𝑤)))) |
| 10 | caofref.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 11 | 1 | feqmptd 5645 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
| 12 | 3 | feqmptd 5645 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
| 13 | 10, 2, 4, 11, 12 | offval2 6187 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑅(𝐺‘𝑤)))) |
| 14 | 10, 4, 2, 12, 11 | offval2 6187 | . 2 ⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐹) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐹‘𝑤)))) |
| 15 | 9, 13, 14 | 3eqtr4d 2249 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝐺 ∘𝑓 𝑅𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ↦ cmpt 4113 ⟶wf 5276 ‘cfv 5280 (class class class)co 5957 ∘𝑓 cof 6169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-of 6171 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |