ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofcom GIF version

Theorem caofcom 6096
Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofcom.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥))
Assertion
Ref Expression
caofcom (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝐺𝑓 𝑅𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caofcom
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . . 6 (𝜑𝐹:𝐴𝑆)
21ffvelcdmda 5643 . . . . 5 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
3 caofcom.3 . . . . . 6 (𝜑𝐺:𝐴𝑆)
43ffvelcdmda 5643 . . . . 5 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
52, 4jca 306 . . . 4 ((𝜑𝑤𝐴) → ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆))
6 caofcom.4 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑅𝑦) = (𝑦𝑅𝑥))
76caovcomg 6020 . . . 4 ((𝜑 ∧ ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆)) → ((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐺𝑤)𝑅(𝐹𝑤)))
85, 7syldan 282 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅(𝐺𝑤)) = ((𝐺𝑤)𝑅(𝐹𝑤)))
98mpteq2dva 4088 . 2 (𝜑 → (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
10 caofref.1 . . 3 (𝜑𝐴𝑉)
111feqmptd 5561 . . 3 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
123feqmptd 5561 . . 3 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
1310, 2, 4, 11, 12offval2 6088 . 2 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))))
1410, 4, 2, 12, 11offval2 6088 . 2 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
159, 13, 143eqtr4d 2218 1 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝐺𝑓 𝑅𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  cmpt 4059  wf 5204  cfv 5208  (class class class)co 5865  𝑓 cof 6071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-of 6073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator