ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptg GIF version

Theorem dmmptg 5177
Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.)
Assertion
Ref Expression
dmmptg (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem dmmptg
StepHypRef Expression
1 eqid 2204 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21dmmpt 5175 . 2 dom (𝑥𝐴𝐵) = {𝑥𝐴𝐵 ∈ V}
3 elex 2782 . . . 4 (𝐵𝑉𝐵 ∈ V)
43ralimi 2568 . . 3 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵 ∈ V)
5 rabid2 2682 . . 3 (𝐴 = {𝑥𝐴𝐵 ∈ V} ↔ ∀𝑥𝐴 𝐵 ∈ V)
64, 5sylibr 134 . 2 (∀𝑥𝐴 𝐵𝑉𝐴 = {𝑥𝐴𝐵 ∈ V})
72, 6eqtr4id 2256 1 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  wral 2483  {crab 2487  Vcvv 2771  cmpt 4104  dom cdm 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-mpt 4106  df-xp 4679  df-rel 4680  df-cnv 4681  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686
This theorem is referenced by:  resfunexg  5795  rdgtfr  6450  rdgruledefgg  6451  negfi  11458  limccnp2lem  15066  dvmptclx  15108  dvmptaddx  15109  dvmptmulx  15110
  Copyright terms: Public domain W3C validator