| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmmptg | GIF version | ||
| Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
| Ref | Expression |
|---|---|
| dmmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmpt 5175 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 3 | elex 2782 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 4 | 3 | ralimi 2568 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 5 | rabid2 2682 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 6 | 4, 5 | sylibr 134 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
| 7 | 2, 6 | eqtr4id 2256 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ∀wral 2483 {crab 2487 Vcvv 2771 ↦ cmpt 4104 dom cdm 4673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-mpt 4106 df-xp 4679 df-rel 4680 df-cnv 4681 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 |
| This theorem is referenced by: resfunexg 5795 rdgtfr 6450 rdgruledefgg 6451 negfi 11458 limccnp2lem 15066 dvmptclx 15108 dvmptaddx 15109 dvmptmulx 15110 |
| Copyright terms: Public domain | W3C validator |