ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmptmulx Unicode version

Theorem dvmptmulx 14634
Description: Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvmptadd.a  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
dvmptadd.b  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
dvmptadd.da  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
dvmptclx.ss  |-  ( ph  ->  X  C_  S )
dvmptadd.c  |-  ( (
ph  /\  x  e.  X )  ->  C  e.  CC )
dvmptadd.d  |-  ( (
ph  /\  x  e.  X )  ->  D  e.  W )
dvmptadd.dc  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  C ) )  =  ( x  e.  X  |->  D ) )
Assertion
Ref Expression
dvmptmulx  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  ( A  x.  C ) ) )  =  ( x  e.  X  |->  ( ( B  x.  C
)  +  ( D  x.  A ) ) ) )
Distinct variable groups:    ph, x    x, S    x, V    x, W    x, X
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem dvmptmulx
StepHypRef Expression
1 dvmptadd.s . . 3  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 dvmptclx.ss . . 3  |-  ( ph  ->  X  C_  S )
3 dvmptadd.a . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
43fmpttd 5691 . . 3  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
5 dvmptadd.c . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  C  e.  CC )
65fmpttd 5691 . . 3  |-  ( ph  ->  ( x  e.  X  |->  C ) : X --> CC )
7 dvmptadd.da . . . . 5  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
87dmeqd 4847 . . . 4  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  A ) )  =  dom  ( x  e.  X  |->  B ) )
9 dvmptadd.b . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
109ralrimiva 2563 . . . . 5  |-  ( ph  ->  A. x  e.  X  B  e.  V )
11 dmmptg 5144 . . . . 5  |-  ( A. x  e.  X  B  e.  V  ->  dom  (
x  e.  X  |->  B )  =  X )
1210, 11syl 14 . . . 4  |-  ( ph  ->  dom  ( x  e.  X  |->  B )  =  X )
138, 12eqtrd 2222 . . 3  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  A ) )  =  X )
14 dvmptadd.dc . . . . 5  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  C ) )  =  ( x  e.  X  |->  D ) )
1514dmeqd 4847 . . . 4  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  C ) )  =  dom  ( x  e.  X  |->  D ) )
16 dvmptadd.d . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  D  e.  W )
1716ralrimiva 2563 . . . . 5  |-  ( ph  ->  A. x  e.  X  D  e.  W )
18 dmmptg 5144 . . . . 5  |-  ( A. x  e.  X  D  e.  W  ->  dom  (
x  e.  X  |->  D )  =  X )
1917, 18syl 14 . . . 4  |-  ( ph  ->  dom  ( x  e.  X  |->  D )  =  X )
2015, 19eqtrd 2222 . . 3  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  C ) )  =  X )
211, 2, 4, 6, 13, 20dvimulf 14622 . 2  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  oF  x.  ( x  e.  X  |->  C ) ) )  =  ( ( ( S  _D  (
x  e.  X  |->  A ) )  oF  x.  ( x  e.  X  |->  C ) )  oF  +  ( ( S  _D  (
x  e.  X  |->  C ) )  oF  x.  ( x  e.  X  |->  A ) ) ) )
221, 2ssexd 4158 . . . 4  |-  ( ph  ->  X  e.  _V )
23 eqidd 2190 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A ) )
24 eqidd 2190 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  C )  =  ( x  e.  X  |->  C ) )
2522, 3, 5, 23, 24offval2 6121 . . 3  |-  ( ph  ->  ( ( x  e.  X  |->  A )  oF  x.  ( x  e.  X  |->  C ) )  =  ( x  e.  X  |->  ( A  x.  C ) ) )
2625oveq2d 5911 . 2  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  oF  x.  ( x  e.  X  |->  C ) ) )  =  ( S  _D  ( x  e.  X  |->  ( A  x.  C ) ) ) )
271, 3, 9, 7, 2dvmptclx 14632 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  CC )
2827, 5mulcld 8007 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( B  x.  C )  e.  CC )
291, 5, 16, 14, 2dvmptclx 14632 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  D  e.  CC )
3029, 3mulcld 8007 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  ( D  x.  A )  e.  CC )
3122, 9, 5, 7, 24offval2 6121 . . 3  |-  ( ph  ->  ( ( S  _D  ( x  e.  X  |->  A ) )  oF  x.  ( x  e.  X  |->  C ) )  =  ( x  e.  X  |->  ( B  x.  C ) ) )
3222, 16, 3, 14, 23offval2 6121 . . 3  |-  ( ph  ->  ( ( S  _D  ( x  e.  X  |->  C ) )  oF  x.  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  ( D  x.  A ) ) )
3322, 28, 30, 31, 32offval2 6121 . 2  |-  ( ph  ->  ( ( ( S  _D  ( x  e.  X  |->  A ) )  oF  x.  (
x  e.  X  |->  C ) )  oF  +  ( ( S  _D  ( x  e.  X  |->  C ) )  oF  x.  (
x  e.  X  |->  A ) ) )  =  ( x  e.  X  |->  ( ( B  x.  C )  +  ( D  x.  A ) ) ) )
3421, 26, 333eqtr3d 2230 1  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  ( A  x.  C ) ) )  =  ( x  e.  X  |->  ( ( B  x.  C
)  +  ( D  x.  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   A.wral 2468   _Vcvv 2752    C_ wss 3144   {cpr 3608    |-> cmpt 4079   dom cdm 4644  (class class class)co 5895    oFcof 6103   CCcc 7838   RRcr 7839    + caddc 7843    x. cmul 7845    _D cdv 14576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958  ax-arch 7959  ax-caucvg 7960  ax-addf 7962  ax-mulf 7963
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-of 6105  df-1st 6164  df-2nd 6165  df-recs 6329  df-frec 6415  df-map 6675  df-pm 6676  df-sup 7012  df-inf 7013  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-n0 9206  df-z 9283  df-uz 9558  df-q 9649  df-rp 9683  df-xneg 9801  df-xadd 9802  df-seqfrec 10476  df-exp 10550  df-cj 10882  df-re 10883  df-im 10884  df-rsqrt 11038  df-abs 11039  df-rest 12743  df-topgen 12762  df-psmet 13853  df-xmet 13854  df-met 13855  df-bl 13856  df-mopn 13857  df-top 13950  df-topon 13963  df-bases 13995  df-ntr 14048  df-cn 14140  df-cnp 14141  df-tx 14205  df-cncf 14510  df-limced 14577  df-dvap 14578
This theorem is referenced by:  dvmptcmulcn  14635
  Copyright terms: Public domain W3C validator