ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmptaddx Unicode version

Theorem dvmptaddx 15039
Description: Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvmptadd.a  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
dvmptadd.b  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
dvmptadd.da  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
dvmptclx.ss  |-  ( ph  ->  X  C_  S )
dvmptadd.c  |-  ( (
ph  /\  x  e.  X )  ->  C  e.  CC )
dvmptadd.d  |-  ( (
ph  /\  x  e.  X )  ->  D  e.  W )
dvmptadd.dc  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  C ) )  =  ( x  e.  X  |->  D ) )
Assertion
Ref Expression
dvmptaddx  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  ( A  +  C ) ) )  =  ( x  e.  X  |->  ( B  +  D ) ) )
Distinct variable groups:    ph, x    x, S    x, V    x, W    x, X
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem dvmptaddx
StepHypRef Expression
1 dvmptadd.s . . 3  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 dvmptclx.ss . . 3  |-  ( ph  ->  X  C_  S )
3 dvmptadd.a . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
43fmpttd 5720 . . 3  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
5 dvmptadd.c . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  C  e.  CC )
65fmpttd 5720 . . 3  |-  ( ph  ->  ( x  e.  X  |->  C ) : X --> CC )
7 dvmptadd.da . . . . 5  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
87dmeqd 4869 . . . 4  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  A ) )  =  dom  ( x  e.  X  |->  B ) )
9 dvmptadd.b . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
109ralrimiva 2570 . . . . 5  |-  ( ph  ->  A. x  e.  X  B  e.  V )
11 dmmptg 5168 . . . . 5  |-  ( A. x  e.  X  B  e.  V  ->  dom  (
x  e.  X  |->  B )  =  X )
1210, 11syl 14 . . . 4  |-  ( ph  ->  dom  ( x  e.  X  |->  B )  =  X )
138, 12eqtrd 2229 . . 3  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  A ) )  =  X )
14 dvmptadd.dc . . . . 5  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  C ) )  =  ( x  e.  X  |->  D ) )
1514dmeqd 4869 . . . 4  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  C ) )  =  dom  ( x  e.  X  |->  D ) )
16 dvmptadd.d . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  D  e.  W )
1716ralrimiva 2570 . . . . 5  |-  ( ph  ->  A. x  e.  X  D  e.  W )
18 dmmptg 5168 . . . . 5  |-  ( A. x  e.  X  D  e.  W  ->  dom  (
x  e.  X  |->  D )  =  X )
1917, 18syl 14 . . . 4  |-  ( ph  ->  dom  ( x  e.  X  |->  D )  =  X )
2015, 19eqtrd 2229 . . 3  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  C ) )  =  X )
211, 2, 4, 6, 13, 20dviaddf 15025 . 2  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  oF  +  ( x  e.  X  |->  C ) ) )  =  ( ( S  _D  ( x  e.  X  |->  A ) )  oF  +  ( S  _D  (
x  e.  X  |->  C ) ) ) )
221, 2ssexd 4174 . . . 4  |-  ( ph  ->  X  e.  _V )
23 eqidd 2197 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A ) )
24 eqidd 2197 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  C )  =  ( x  e.  X  |->  C ) )
2522, 3, 5, 23, 24offval2 6155 . . 3  |-  ( ph  ->  ( ( x  e.  X  |->  A )  oF  +  ( x  e.  X  |->  C ) )  =  ( x  e.  X  |->  ( A  +  C ) ) )
2625oveq2d 5941 . 2  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  oF  +  ( x  e.  X  |->  C ) ) )  =  ( S  _D  ( x  e.  X  |->  ( A  +  C ) ) ) )
2722, 9, 16, 7, 14offval2 6155 . 2  |-  ( ph  ->  ( ( S  _D  ( x  e.  X  |->  A ) )  oF  +  ( S  _D  ( x  e.  X  |->  C ) ) )  =  ( x  e.  X  |->  ( B  +  D ) ) )
2821, 26, 273eqtr3d 2237 1  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  ( A  +  C ) ) )  =  ( x  e.  X  |->  ( B  +  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    C_ wss 3157   {cpr 3624    |-> cmpt 4095   dom cdm 4664  (class class class)co 5925    oFcof 6137   CCcc 7894   RRcr 7895    + caddc 7899    _D cdv 14975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-addf 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pm 6719  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-rest 12943  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-met 14177  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-ntr 14416  df-cn 14508  df-cnp 14509  df-tx 14573  df-limced 14976  df-dvap 14977
This theorem is referenced by:  dvmptsubcn  15043  dvmptfsum  15045
  Copyright terms: Public domain W3C validator