ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmptaddx Unicode version

Theorem dvmptaddx 14898
Description: Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvmptadd.a  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
dvmptadd.b  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
dvmptadd.da  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
dvmptclx.ss  |-  ( ph  ->  X  C_  S )
dvmptadd.c  |-  ( (
ph  /\  x  e.  X )  ->  C  e.  CC )
dvmptadd.d  |-  ( (
ph  /\  x  e.  X )  ->  D  e.  W )
dvmptadd.dc  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  C ) )  =  ( x  e.  X  |->  D ) )
Assertion
Ref Expression
dvmptaddx  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  ( A  +  C ) ) )  =  ( x  e.  X  |->  ( B  +  D ) ) )
Distinct variable groups:    ph, x    x, S    x, V    x, W    x, X
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem dvmptaddx
StepHypRef Expression
1 dvmptadd.s . . 3  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 dvmptclx.ss . . 3  |-  ( ph  ->  X  C_  S )
3 dvmptadd.a . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
43fmpttd 5714 . . 3  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
5 dvmptadd.c . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  C  e.  CC )
65fmpttd 5714 . . 3  |-  ( ph  ->  ( x  e.  X  |->  C ) : X --> CC )
7 dvmptadd.da . . . . 5  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
87dmeqd 4865 . . . 4  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  A ) )  =  dom  ( x  e.  X  |->  B ) )
9 dvmptadd.b . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
109ralrimiva 2567 . . . . 5  |-  ( ph  ->  A. x  e.  X  B  e.  V )
11 dmmptg 5164 . . . . 5  |-  ( A. x  e.  X  B  e.  V  ->  dom  (
x  e.  X  |->  B )  =  X )
1210, 11syl 14 . . . 4  |-  ( ph  ->  dom  ( x  e.  X  |->  B )  =  X )
138, 12eqtrd 2226 . . 3  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  A ) )  =  X )
14 dvmptadd.dc . . . . 5  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  C ) )  =  ( x  e.  X  |->  D ) )
1514dmeqd 4865 . . . 4  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  C ) )  =  dom  ( x  e.  X  |->  D ) )
16 dvmptadd.d . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  D  e.  W )
1716ralrimiva 2567 . . . . 5  |-  ( ph  ->  A. x  e.  X  D  e.  W )
18 dmmptg 5164 . . . . 5  |-  ( A. x  e.  X  D  e.  W  ->  dom  (
x  e.  X  |->  D )  =  X )
1917, 18syl 14 . . . 4  |-  ( ph  ->  dom  ( x  e.  X  |->  D )  =  X )
2015, 19eqtrd 2226 . . 3  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  C ) )  =  X )
211, 2, 4, 6, 13, 20dviaddf 14884 . 2  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  oF  +  ( x  e.  X  |->  C ) ) )  =  ( ( S  _D  ( x  e.  X  |->  A ) )  oF  +  ( S  _D  (
x  e.  X  |->  C ) ) ) )
221, 2ssexd 4170 . . . 4  |-  ( ph  ->  X  e.  _V )
23 eqidd 2194 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A ) )
24 eqidd 2194 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  C )  =  ( x  e.  X  |->  C ) )
2522, 3, 5, 23, 24offval2 6148 . . 3  |-  ( ph  ->  ( ( x  e.  X  |->  A )  oF  +  ( x  e.  X  |->  C ) )  =  ( x  e.  X  |->  ( A  +  C ) ) )
2625oveq2d 5935 . 2  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  oF  +  ( x  e.  X  |->  C ) ) )  =  ( S  _D  ( x  e.  X  |->  ( A  +  C ) ) ) )
2722, 9, 16, 7, 14offval2 6148 . 2  |-  ( ph  ->  ( ( S  _D  ( x  e.  X  |->  A ) )  oF  +  ( S  _D  ( x  e.  X  |->  C ) ) )  =  ( x  e.  X  |->  ( B  +  D ) ) )
2821, 26, 273eqtr3d 2234 1  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  ( A  +  C ) ) )  =  ( x  e.  X  |->  ( B  +  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3154   {cpr 3620    |-> cmpt 4091   dom cdm 4660  (class class class)co 5919    oFcof 6130   CCcc 7872   RRcr 7873    + caddc 7877    _D cdv 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-addf 7996
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-pm 6707  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-rest 12855  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-ntr 14275  df-cn 14367  df-cnp 14368  df-tx 14432  df-limced 14835  df-dvap 14836
This theorem is referenced by:  dvmptsubcn  14902  dvmptfsum  14904
  Copyright terms: Public domain W3C validator