| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ecexg | GIF version | ||
| Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.) | 
| Ref | Expression | 
|---|---|
| ecexg | ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ec 6594 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
| 2 | imaexg 5023 | . 2 ⊢ (𝑅 ∈ 𝐵 → (𝑅 “ {𝐴}) ∈ V) | |
| 3 | 1, 2 | eqeltrid 2283 | 1 ⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 Vcvv 2763 {csn 3622 “ cima 4666 [cec 6590 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-ec 6594 | 
| This theorem is referenced by: ecelqsg 6647 uniqs 6652 eroveu 6685 th3q 6699 dmaddpq 7446 dmmulpq 7447 addnnnq0 7516 mulnnnq0 7517 addsrpr 7812 mulsrpr 7813 quslem 12967 eqgen 13357 qusghm 13412 znzrhval 14203 | 
| Copyright terms: Public domain | W3C validator |