ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecexg GIF version

Theorem ecexg 6631
Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.)
Assertion
Ref Expression
ecexg (𝑅𝐵 → [𝐴]𝑅 ∈ V)

Proof of Theorem ecexg
StepHypRef Expression
1 df-ec 6629 . 2 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 imaexg 5041 . 2 (𝑅𝐵 → (𝑅 “ {𝐴}) ∈ V)
31, 2eqeltrid 2293 1 (𝑅𝐵 → [𝐴]𝑅 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  Vcvv 2773  {csn 3634  cima 4682  [cec 6625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-xp 4685  df-cnv 4687  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-ec 6629
This theorem is referenced by:  ecelqsg  6682  uniqs  6687  eroveu  6720  th3q  6734  dmaddpq  7499  dmmulpq  7500  addnnnq0  7569  mulnnnq0  7570  addsrpr  7865  mulsrpr  7866  quslem  13200  eqgen  13607  qusghm  13662  znzrhval  14453
  Copyright terms: Public domain W3C validator