ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecexg GIF version

Theorem ecexg 6505
Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.)
Assertion
Ref Expression
ecexg (𝑅𝐵 → [𝐴]𝑅 ∈ V)

Proof of Theorem ecexg
StepHypRef Expression
1 df-ec 6503 . 2 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 imaexg 4958 . 2 (𝑅𝐵 → (𝑅 “ {𝐴}) ∈ V)
31, 2eqeltrid 2253 1 (𝑅𝐵 → [𝐴]𝑅 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  Vcvv 2726  {csn 3576  cima 4607  [cec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-ec 6503
This theorem is referenced by:  ecelqsg  6554  uniqs  6559  eroveu  6592  th3q  6606  dmaddpq  7320  dmmulpq  7321  addnnnq0  7390  mulnnnq0  7391  addsrpr  7686  mulsrpr  7687
  Copyright terms: Public domain W3C validator