ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecexg GIF version

Theorem ecexg 6336
Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.)
Assertion
Ref Expression
ecexg (𝑅𝐵 → [𝐴]𝑅 ∈ V)

Proof of Theorem ecexg
StepHypRef Expression
1 df-ec 6334 . 2 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 imaexg 4819 . 2 (𝑅𝐵 → (𝑅 “ {𝐴}) ∈ V)
31, 2syl5eqel 2181 1 (𝑅𝐵 → [𝐴]𝑅 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1445  Vcvv 2633  {csn 3466  cima 4470  [cec 6330
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-xp 4473  df-cnv 4475  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-ec 6334
This theorem is referenced by:  ecelqsg  6385  uniqs  6390  eroveu  6423  th3q  6437  dmaddpq  7035  dmmulpq  7036  addnnnq0  7105  mulnnnq0  7106  addsrpr  7388  mulsrpr  7389
  Copyright terms: Public domain W3C validator